Any object has maximum gravitational potential energy when it is at its highest position.
Gravitational Potential Energy, Elastic Potential Energy, Chemical Potential Energy, Electrical Potential Energy, Nuclear Potential Energy. If you want more info, check out this wikipedia page that I linked.
Upward motion on a roller coaster converts kinetic energy into potential energy. Downward motion converts potential energy into kinetic energy. Forward motion is a result of excess potential enegy converted into kinetic energy that cannot be expended while falling.
Kinetic energy is at its maximum when the velocity of the ball is greatest. This will occur immediately upon release. Air resistance will slow the ball from this point and unless the ball falls back past its original starting height, it will never achieve a velocity greater than that with which it starts.
Kinetic energy comes from movement. If the roller coaster is moving at the top of the hill, it has kinetic energy. if the rollercoaster isn't moving then it has potential energy.
There is chemical potential energy, heat potential energy, elastic potential, and gravitational potential energy.
Energy is transferred from potential to kinetic on a roller coaster as the coaster descends from a higher elevation to a lower elevation. As the coaster moves downwards, gravitational potential energy is converted into kinetic energy. This energy transfer allows the coaster to gain speed and momentum.
A roller coaster
The maximum energy conversion from gravitational potential energy to kinetic energy occurs when all of the initial potential energy of the mass is converted to kinetic energy. This means that the maximum amount of energy the mass can change from gravitational potential energy to kinetic energy is equal to the initial potential energy of the mass.
No, gravitational portential energy is more with more hight and gravitational kinetic energy is maximum just before reaching the ground.
A simple example would be a roller coaster. As the coaster climbs up a hill, potential energy due to its height increases. When it goes down the hill, this potential energy is converted to kinetic energy as the coaster gains speed.
At the top of the second hill, the coaster has maximum potential energy and minimum kinetic energy. As the coaster descends, potential energy decreases while kinetic energy increases due to the conversion of potential energy into kinetic energy.
At the tallest point on the track. Potential energy is given by U(Which is potential energy) = mass times height time gravitational constant. You can't change the gravitational constant, or the mass of the roller coaster car. So you have to change the height. PE=mgh so more the height and the mass the more PE
At the top of the loops the cars have the maximum potential energy. The maximum kinetic energy is when they are going fastest. So the energy they possess is switching from potential to kinetic and back again as they progress around the circuit, but the overall change from start to finish is a loss of potential energy.Potential energy-when the roller coaster is getting startedKinetic energy-roller coaster is exactly using the potential energy to speed up
At the top of the first hill, PE is at its maximum, whereas KE is zero. When the train starts to fall down the first hill, PE decreases and KE increases. At the bottom of the hill, KE is at its maximum, and PE is zero.
An object's gravitational potential energy is at its maximum when it is at its highest point in the system, such as at the peak of a hill or when it is the farthest distance away from the source of the gravitational field. This is because the potential energy is directly proportional to the height and distance from the reference point.
the gravitational potential energy of a roller coaster is equal to two things. Not only is it equal to the gravitational potential energy, it is also equal to the kinetic energy at the lowest point of the coaster. the gravitational potential energy can be calculated as: m*g*h where m is mass (kilograms), g is gravity (9.8 m/s^2), and h is height (metres).d the kinetic energy at the bottom of the coaster can be calculated as (m*v^2)/2 where m is mass (kilograms), v is velocity (metres/second).
Potential energy to kinetic energy: at the top of a hill, the coaster has high potential energy which is converted to kinetic energy as it speeds down the hill. Kinetic energy to potential energy: as the coaster climbs up a hill, its kinetic energy decreases and is converted back to potential energy. Mechanical energy to thermal energy: friction between the coaster and the track converts mechanical energy into thermal energy, causing the coaster and track to heat up. Electrical energy to kinetic energy: in a launched coaster, electrical energy is converted to kinetic energy as the coaster accelerates along the track. Potential energy to sound energy: when the coaster goes over bumps or loops, potential energy is converted to sound energy as the coaster vibrates and creates noise.