by not buyin so much stuff.. common sense -_______-
Yes, reducing mass would increase acceleration according to Newton's Second Law of Motion, which states that acceleration is inversely proportional to mass. Therefore, lower mass means a higher acceleration, given the same force.
Acceleration would increase the most when a force is applied in the direction of motion and there is little resistance or friction opposing the motion. This means that the object can gain speed more quickly as the force has a greater effect on its acceleration.
To increase acceleration for a given net force, you can decrease the mass of the system. This is because acceleration is inversely proportional to mass when net force is constant (F = ma). Alternatively, you can increase the net force acting on the system.
From Newton's Second Law of Motion, I know that Fnet=manet. anet is the net acceleration. From this equation, I know that Fnet is proportional to anet. THis means that if I decrease the net force, I decrease the net acceleration. If I increase the net force, I increase the net acceleration. If your Fnet equation is Fnet=Fapp-Ff, then increasing the applied force would also increase the net acceleration. Therefore, more applied fore, more acceleration.
No, increasing mass does not increase acceleration. Acceleration is dependent on the force applied to an object and the object's mass. In the equation F = ma, where F is the force, m is the mass, and a is the acceleration, increasing mass would actually decrease acceleration if the force remains constant.
its acceleration will be increased
If the force on the right sled were larger, its acceleration would increase. This is because acceleration is directly proportional to force according to Newton's second law of motion. The larger force would result in a greater acceleration of the sled.
To maintain acceleration, both mass and force must remain unchanged. Decreasing mass and/or increasing force will increase acceleration.
As per Newton's first law of motion, if the applied force remains the same, an increase in mass will result in a decrease in acceleration. In contrast, if the acceleration were to remain the same when the mass increases, there must be a greater force applied.
By F = ma, if the force remains constant, and the mass decreases, this would mean that the acceleration has increased by exactly the same factor as the decrease in mass. That is, if the mass of a substance was halved, its acceleration would have doubled exactly.
The acceleration of the swing would increase if one person pushed two people on it because the combined mass of the two people would be greater than just one person, requiring more force to achieve the same acceleration. Increased force would result in greater acceleration.
Going up a hill would make your acceleration decrease or cause it to be slow. Going down a hill would make acceleration increase causing you to go faster.