The period of a pendulum can be made longer by lengthening the cord or stick that connects the weight and the pivot. (Assuming that you cannot change the force of gravity.)
A longer pendulum has a longer period.
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
The length of the pendulum has the greatest effect on its period. A longer pendulum will have a longer period, while a shorter pendulum will have a shorter period. The mass of the pendulum bob and the angle of release also affect the period, but to a lesser extent.
The physical parameters that might influence the period of a simple pendulum are the length of the pendulum, the acceleration due to gravity, and the mass of the pendulum bob. A longer pendulum will have a longer period, while a higher acceleration due to gravity or a heavier pendulum bob will result in a shorter period.
The longer a pendulum is, the more time it takes a pendulum takes to complete a period of time. If a clock is regulated by a pendulum and it runs fast, you can make it run slower by making the pendulum longer. Likewise, if the clock runs slow, you can make your clock run faster by making the pendulum shorter. (What a pendulum actually does is measure the ratio between time and gravity at a particular location, but that is beyond the scope of this answer.)
In the context of a pendulum, the length represents the distance from the point of suspension to the center of mass of the pendulum. The length of the pendulum affects the period of its oscillation, with longer pendulums having a longer period and shorter pendulums having a shorter period.
The length of the pendulum and the acceleration due to gravity are two factors that can alter the oscillation period of a pendulum. A longer pendulum will have a longer period, while a stronger gravitational force will result in a shorter period.
The period depends only on the acceleration due to gravity and the length of the pendulum. Gravitational acceleration depends on the location on the surface of the earth: latitude, altitude play a part. Also, some pendulums are subject to thermal expansion and so the length changes. These factors do impact on the period of a pendulum.
An increase in temperature typically causes materials to expand, leading to an increase in the length of the pendulum. This longer pendulum will have a longer period of oscillation, as the time for a complete swing is directly proportional to the length of the pendulum. Therefore, an increase in temperature can result in a longer period of oscillation for the clock's pendulum.
The time of swing of a pendulum is T = 2π √ (l/g) where l is the length of the pendulum. As T ∝√l (Time is directly proportional to the square root of l) then, the longer the pendulum, the greater is the period. Therefore longer pendulums have longer periods than shorter pendulums.
The length of a pendulum directly affects its period, or the time it takes to complete one full swing. A longer pendulum will have a longer period, while a shorter pendulum will have a shorter period. This relationship is described by the formula T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.
... dependent on the length of the pendulum. ... longer than the period of the same pendulum on Earth. Both of these are correct ways of finishing that sentence.