When the action potential reaches the button(axon terminal) of the presynaptic neuron the depolarization causes voltage gated calcium channels to open increasing intracellular calcium content. This causes synaptic vesicles to fuse to the membrane and release neurotransmitters that bind to the post synaptic neuron and create a chemical action potential.
The synapse between pre synaptic and post synaptic neuron. Here the acetylcholine is released. It is destroyed by the enzyme acetylcholinesterase in milliseconds, once the impulse is passed to the post synaptic neuron
Flash! - The impulse is a jump of electricity from one neuron to the next via the dendrites. It happens in a millisecond of time so we are not even aware of it. Touch an ice cube with your finger; the signal goes from the finger to the brain and back that we get the immediate sense that the ice cube is cold.
A synapse is the connection between two neurons. It consists of the synaptic cleft (the physical gap between one neuron's axon and the other's dendrite). Neurotransmitters cross the gap from the axon to the dendrite and affect whether the next neuron fires.
The synapse consists of two main parts that allow one neuron to communicate with another: 1) the presynaptic terminal located at the end of an axon; and 2) the postsynaptic terminal located on the dendrite of another neuron. The presynaptic terminal is where neurotransmitters are stored and released from. The postsynaptic terminal is the recipient side of the synapse. Neurotransmitters released from the presynaptic terminal will diffuse across the synaptic cleft and bind to receptors located on the surface of dendritic spines.
Presynaptic neurons send signals, while postsynaptic neurons receive signals in synaptic transmission. Presynaptic neurons release neurotransmitters that travel across the synapse to bind to receptors on postsynaptic neurons, triggering a response.
The space between neurons is called the synaptic cleft. It is where neurotransmitters are released by the presynaptic neuron, travel across the cleft, and bind to receptors on the postsynaptic neuron to transmit chemical messages.
Point to point or saltatory conduction.
An electrical impulse will travel through a neuron.
Neural communication requires an electrical signal to travel down the axon of a neuron, which is generated by changes in ion concentrations across the cell membrane. At the synapse, neurotransmitters are released from the presynaptic neuron and received by receptors on the postsynaptic neuron to transmit the signal.
Diffusion of transmitters across synaptic cleft is the process by which neurotransmitters are released from the presynaptic neuron into the synaptic cleft and then bind to receptors on the postsynaptic neuron. This allows for the transmission of signals from one neuron to another in the nervous system.
There are two basic reasons. One is that chemical transmission only affects the side in the synapse that have specific receptors for the neurotransmitter released, secondly the presynaptic terminal has been depolarized and is in it's refractory period, where it can not again fire. This is also the reason why the travelling wave of the action potential only travels from the axon hillock where the AP is generated towards the nerve terminal. There is, however, one caveat to this 'rule'. In the CA1 region of the hippocampus there is a retrograde signal from the postsynaptic neuron back to the presynaptic side using the gas NO as the 'transmitter'.
The junction between two neurons is called a synapse. At the synapse, the electrical signal in the first neuron (presynaptic neuron) is converted into a chemical signal in the form of neurotransmitters, which then travel across the synapse and are received by the second neuron (postsynaptic neuron) to continue the signal transmission.