1060 kg/m3, very close to pure water's density of 1000 kg/m3. The average adult has a blood volume of roughly 5 litres (11 US pt) or 1.3 gallons, which is composed of plasma and formed elements. The formed elements are the two types of blood cell or corpuscle – the red blood cells, (erythrocytes) and white blood cells (leukocytes), and the cell fragments called platelets that are involved in clotting. By volume, the red blood cells constitute about 45% of whole blood, the plasma about 54.3%, and white cells about 0.7%. Whole blood (plasma and cells) exhibits non-Newtonian fluid dynamics. Cells One microliter of blood contains: 4.7 to 6.1 million (male), 4.2 to 5.4 million (female) erythrocytes: Red blood cells contain the blood's hemoglobin and distribute oxygen. Mature red blood cells lack a nucleus and organelles in mammals. The red blood cells (together with endothelial vessel cells and other cells) are also marked by glycoproteins that define the different blood types. The proportion of blood occupied by red blood cells is referred to as the hematocrit, and is normally about 45%. The combined surface area of all red blood cells of the human body would be roughly 2,000 times as great as the body's exterior surface. 4,000–11,000 leukocytes: White blood cells are part of the body's immune system; they destroy and remove old or aberrant cells and cellular debris, as well as attack infectious agents (pathogens) and foreign substances. The cancer of leukocytes is called leukemia. 200,000–500,000 thrombocytes: Also called platelets, they take part in blood clotting (coagulation). Fibrin from the coagulation cascade creates a mesh over the platelet plug. Plasma About 55% of blood is blood plasma, a fluid that is the blood's liquid medium, which by itself is straw-yellow in color. The blood plasma volume totals of 2.7–3.0 liters (2.8–3.2 quarts) in an average human. It is essentially an aqueous solution containing 92% water, 8% blood plasma proteins, and trace amounts of other materials. Plasma circulates dissolved nutrients, such as glucose, amino acids, and fatty acids (dissolved in the blood or bound to plasma proteins), and removes waste products, such as carbon dioxide, urea, and lactic acid. Other important components include: Serum albumin Blood-clotting factors (to facilitate coagulation) Immunoglobulins (antibodies) lipoprotein particles Various other proteins Various electrolytes (mainly sodium and chloride)The term serum refers to plasma from which the clotting proteins have been removed. Most of the proteins remaining are albumin and immunoglobulins. pH values Blood pH is regulated to stay within the narrow range of 7.35 to 7.45, making it slightly basic. Blood that has a pH below 7.35 is too acidic, whereas blood pH above 7.45 is too basic. Blood pH, partial pressure of oxygen (pO2), partial pressure of carbon dioxide (pCO2), and bicarbonate (HCO3−) are carefully regulated by a number of homeostatic mechanisms, which exert their influence principally through the respiratory system and the urinary system to control the acid-base balance and respiration. An arterial blood gas test measures these. Plasma also circulates hormones transmitting their messages to various tissues. The list of normal reference ranges for various blood electrolytes is extensive. Human blood is typical of that of mammals, although the precise details concerning cell numbers, size, protein structure, and so on, vary somewhat between species. In non-mammalian vertebrates, however, there are some key differences: Red blood cells of non-mammalian vertebrates are flattened and ovoid in form, and retain their cell nuclei. There is considerable variation in the types and proportions of white blood cells; for example, acidophils are generally more common than in humans. Platelets are unique to mammals; in other vertebrates, small nucleated, spindle cells called thrombocytes are responsible for blood clotting instead. Blood is circulated around the body through blood vessels by the pumping action of the heart. In humans, blood is pumped from the strong left ventricle of the heart through arteries to peripheral tissues and returns to the right atrium of the heart through veins. It then enters the right ventricle and is pumped through the pulmonary artery to the lungs and returns to the left atrium through the pulmonary veins. Blood then enters the left ventricle to be circulated again. Arterial blood carries oxygen from inhaled air to all of the cells of the body, and venous blood carries carbon dioxide, a waste product of metabolism by cells, to the lungs to be exhaled. However, one exception includes pulmonary arteries, which contain the most deoxygenated blood in the body, while the pulmonary veins contain oxygenated blood. Additional return flow may be generated by the movement of skeletal muscles, which can compress veins and push blood through the valves in veins toward the right atrium. The blood circulation was famously described by William Harvey in 1628. In vertebrates, the various cells of blood are made in the bone marrow in a process called hematopoiesis, which includes erythropoiesis, the production of red blood cells; and myelopoiesis, the production of white blood cells and platelets. During childhood, almost every human bone produces red blood cells; as adults, red blood cell production is limited to the larger bones: the bodies of the vertebrae, the breastbone (sternum), the ribcage, the pelvic bones, and the bones of the upper arms and legs. In addition, during childhood, the thymus gland, found in the mediastinum, is an important source of T lymphocytes. The proteinaceous component of blood (including clotting proteins) is produced predominantly by the liver, while hormones are produced by the endocrine glands and the watery fraction is regulated by the hypothalamus and maintained by the kidney. Healthy erythrocytes have a plasma life of about 120 days before they are degraded by the spleen, and the Kupffer cells in the liver. The liver also clears some proteins, lipids, and amino acids. The kidney actively secretes waste products into the urine. About 98.5% of the oxygen in a sample of arterial blood in a healthy human breathing air at sea-level pressure is chemically combined with the hemoglobin. About 1.5% is physically dissolved in the other blood liquids and not connected to hemoglobin. The hemoglobin molecule is the primary transporter of oxygen in mammals and many other species (for exceptions, see below). Hemoglobin has an oxygen binding capacity between 1.36 and 1.40 ml O2 per gram hemoglobin, which increases the total blood oxygen capacity seventyfold, compared to if oxygen solely were carried by its solubility of 0.03 ml O2 per liter blood per mm Hg partial pressure of oxygen (about 100 mm Hg in arteries).With the exception of pulmonary and umbilical arteries and their corresponding veins, arteries carry oxygenated blood away from the heart and deliver it to the body via arterioles and capillaries, where the oxygen is consumed; afterwards, venules and veins carry deoxygenated blood back to the heart. Under normal conditions in adult humans at rest, hemoglobin in blood leaving the lungs is about 98–99% saturated with oxygen, achieving an oxygen delivery between 950 and 1150 ml/min to the body. In a healthy adult at rest, oxygen consumption is approximately 200–250 ml/min, and deoxygenated blood returning to the lungs is still roughly 75% (70 to 78%) saturated. Increased oxygen consumption during sustained exercise reduces the oxygen saturation of venous blood, which can reach less than 15% in a trained athlete; although breathing rate and blood flow increase to compensate, oxygen saturation in arterial blood can drop to 95% or less under these conditions. Oxygen saturation this low is considered dangerous in an individual at rest (for instance, during surgery under anesthesia). Sustained hypoxia (oxygenation less than 90%), is dangerous to health, and severe hypoxia (saturations less than 30%) may be rapidly fatal.A fetus, receiving oxygen via the placenta, is exposed to much lower oxygen pressures (about 21% of the level found in an adult's lungs), so fetuses produce another form of hemoglobin with a much higher affinity for oxygen (hemoglobin F) to function under these conditions. CO2 is carried in blood in three different ways. (The exact percentages vary depending whether it is arterial or venous blood). Most of it (about 70%) is converted to bicarbonate ions HCO−3 by the enzyme carbonic anhydrase in the red blood cells by the reaction CO2 + H2O → H2CO3 → H+ + HCO−3; about 7% is dissolved in the plasma; and about 23% is bound to hemoglobin as carbamino compounds.Hemoglobin, the main oxygen-carrying molecule in red blood cells, carries both oxygen and carbon dioxide. However, the CO2 bound to hemoglobin does not bind to the same site as oxygen. Instead, it combines with the N-terminal groups on the four globin chains. However, because of allosteric effects on the hemoglobin molecule, the binding of CO2 decreases the amount of oxygen that is bound for a given partial pressure of oxygen. The decreased binding to carbon dioxide in the blood due to increased oxygen levels is known as the Haldane effect, and is important in the transport of carbon dioxide from the tissues to the lungs. A rise in the partial pressure of CO2 or a lower pH will cause offloading of oxygen from hemoglobin, which is known as the Bohr effect. Some oxyhemoglobin loses oxygen and becomes deoxyhemoglobin. Deoxyhemoglobin binds most of the hydrogen ions as it has a much greater affinity for more hydrogen than does oxyhemoglobin. In mammals, blood is in equilibrium with lymph, which is continuously formed in tissues from blood by capillary ultrafiltration. Lymph is collected by a system of small lymphatic vessels and directed to the thoracic duct, which drains into the left subclavian vein, where lymph rejoins the systemic blood circulation. Blood circulation transports heat throughout the body, and adjustments to this flow are an important part of thermoregulation. Increasing blood flow to the surface (e.g., during warm weather or strenuous exercise) causes warmer skin, resulting in faster heat loss. In contrast, when the external temperature is low, blood flow to the extremities and surface of the skin is reduced and to prevent heat loss and is circulated to the important organs of the body, preferentially. Rate of blood flow varies greatly between different organs
It depends on the instrument that they are playing.
No, velocity and frequency are different physical quantities. Velocity is the rate of change of position with respect to time, while frequency is the number of occurrences of a repeating event per unit of time. In some cases, they may be related through the wavelength of a wave, but they are not equivalent.
The velocity of a periodic wave is determined by the medium through which it travels and the frequency of the wave. Changes in the medium's properties (such as density or elasticity) can alter the wave velocity. Additionally, changes in the frequency of the wave can affect its velocity according to the wave equation.
The frequency heard by the listener will increase as both the source and listener move towards each other. The change in frequency is given by the Doppler effect equation: f' = f * (v + v_L) / (v - v_S) where f' is the observed frequency, f is the actual frequency, v is the speed of sound, v_L is the speed of the listener, and v_S is the speed of the source.
Frequency is the parameter of light which doesnt change on reflection because it is the ratio of velocity of light in medium and wavelength of the particle.Hence,when velocity increases wavelength also increases and when velocity decreases wavelength also decreases but its ratio always remains constant.
An accelerometer is an instrument to measure acceleration, which is the change in velocity per unit of time.
No, sound velocity does not change based on sound frequency in a uniform medium. In a medium with a constant temperature and pressure, the speed of sound remains constant regardless of the frequency of the sound waves.
Velocity of wave = Frequency X Wavelength So if Velocity of the wave is kept constant, then Frequency of the wave is inversely proportional to it's wavelength i.e increase in frequency means decreases in Wavelength.
This is not true practically. Theoretically speaking as velocity increases with wavelength remains constant, then frequency has to increase accordingly. Since the formula for velocity is given as: velocity of the wave v = frequency (nu) * wavelength (lamda). In reality the characteristic, namely, frequency remains constant when the speed of the wave changes as it traverses in different medium.
If you change sound's frequency and hold the velocity constant, the sound's wavelength also changes. If you change sound's frequency and keep the wavelength constant, then velocity also changes.
Frequency is directly related to pitch - higher frequency corresponds to higher pitch and lower frequency corresponds to lower pitch. To change frequency and pitch, you can adjust the length, tension, or thickness of a vibrating medium such as a string or column of air. This can be done by changing the position of frets on a string instrument, adjusting the length of a wind instrument, or changing the tension on a drum skin.
To calculate the change in velocity of an object, you subtract the initial velocity from the final velocity. The formula is: Change in velocity Final velocity - Initial velocity.