Under a dilation, the shape of a geometric figure is preserved, meaning that the figure remains similar to its original form but may change in size. The angles of the figure remain unchanged, and the ratios of corresponding lengths are consistent. However, distances are scaled by a constant factor, leading to proportional increases or decreases in size.
All angles are preserved. The sequence of line segments is preserved.
Properties such as parallelism, ratio of distances, and the measure of angles are preserved under dilation. This means that parallel lines remain parallel after dilation, the ratio of lengths between corresponding points remains constant, and angles maintain their measures before and after dilation.
distance
Dilation transformations do not preserve distances between points, angles, or the orientation of figures. While they do maintain the shape of geometric figures and the relative proportions between their sizes, the actual lengths of sides and the overall size change according to the dilation factor. Therefore, properties like congruence and the specific measurements of sides are not preserved.
A isometry is a transformation where distance (aka size) is preserved. In a dilation, the size is being altered, so no, it is not an isometry.
57400
No, dilation is not a rigid motion transformation. Rigid motion transformations, such as translations, rotations, and reflections, preserve distances and angles. In contrast, dilation changes the size of a figure while maintaining its shape, thus altering distances between points. Therefore, while the shape remains similar, the overall dimensions are not preserved.
A transformation that will not produce a congruent figure is a dilation. Dilation changes the size of a figure while maintaining its shape, meaning the resulting figure is similar but not congruent to the original. In contrast, congruent figures have the same size and shape, which is not preserved during dilation. Other transformations that maintain congruence include translations, rotations, and reflections.
Actually, when dilating a triangle, the angles remain unchanged while the side lengths are proportionally increased or decreased based on the scale factor of the dilation. Dilation is a transformation that enlarges or reduces a shape while maintaining its overall proportions. Therefore, the triangle's shape is preserved, but its size changes according to the dilation factor.
If the original point was (-4, 12) then the image is (-16, 48).
Invariant points of a dilation are the points that remain unchanged under the transformation. In a dilation centered at a point ( C ) with a scale factor ( k ), the invariant point is typically the center ( C ) itself. This means that when a point is dilated with respect to ( C ), it either moves closer to or further away from ( C ), but ( C ) does not move. Therefore, the only invariant point in a dilation is the center of dilation.
dilation and currettage is usually done under anesthesia. There is associated post operative cramping similar to cramping during the monthly cycle