Autoregulation. You're welcome :)
Blood pressure promotes filtration of blood in the kidneys by, generally, being greater in pressure than blood colloid osmotic pressure and glomerular capsule pressure which produces a net filtration pressure of about 10 mm Hg. Net filtration pressure forces a large volume of fluid into the capsular space. When blood pressure increase or decreases slightly, changes in the diameters of the afferent and efferent arterioles can actually keep net filtration pressure steady to maintain normal glomerular filtration. Constriction of the afferent arteriole decreases blood flow into the glomerulus, which decreases net filtration pressure. Constriction of the efferent arteriole slows outflow of blood and increases net filtration pressure.
No, pressure caused by gravity is not always necessary for filtration pressure to occur in the body. Filtration can also occur through active transport processes that do not rely on gravity to generate pressure, such as in the kidneys where filtration pressure is primarily driven by blood pressure in the glomerulus.
The filtration rate in the kidneys is primarily controlled by blood pressure and the action of hormones such as aldosterone and antidiuretic hormone. These factors regulate the amount of blood flow through the glomerulus and the permeability of the filtration membrane.
Glomerular hydrostatic pressure is the primary driving force for filtration rate in the kidneys. An increase in glomerular hydrostatic pressure will increase the rate of filtration by pushing more fluid and solutes out of the blood and into the renal tubules. Conversely, a decrease in glomerular hydrostatic pressure will decrease the filtration rate.
The mechanism for maintaining filtration rate in relation to blood pressure is carried out by the juxtaglomerular apparatus which is composed of the macula densa and the juxtaglomerular cells in the kidneys. When blood pressure drops, the juxtaglomerular apparatus secretes renin, which initiates the renin-angiotensin-aldosterone cycle that raises blood pressure.
The force that favors blood filtration in the kidneys is called hydrostatic pressure. This pressure is generated by the heart pumping blood into the glomerulus, forcing water and small solutes out of the blood and into the Bowman's capsule.
The excretory system that is partly based on the filtration of fluid under high hydrostatic pressure is the renal system, specifically the process that occurs in the kidneys. In the kidneys, blood is filtered under high pressure to remove waste products and excess ions, which are then excreted as urine.
To increase your glomerular filtration rate, blood flow needs to be increased to the kidneys and the impaired kidneys function restored. The glomerular filtration rate, of GFR, measures how much blood passes through the glomeruli into the kidneys each minute.
kidneys
filtration
Filtration is when fluids and solutes flow down their pressure gradient across a membrane such as in the glomerulus of the kidney.
The chief force pushing water and solutes out of the blood across the filtration membrane in the kidneys is hydrostatic pressure. This pressure is generated by the blood flow entering the glomerulus and helps drive the filtration of water and small solutes into the kidney tubules to eventually form urine.