The particle model explains expansion and contraction by understanding that in solids, particles are closely packed and vibrate in fixed positions. When heated, they gain energy and vibrate more vigorously, causing the material to expand. Conversely, when cooled, particles lose energy and vibrate less, leading to contraction.
The body uses ATP as a source of energy to power muscle contraction. When ATP is broken down into ADP and inorganic phosphate, energy is released, which is used to fuel the contraction process. The enzyme AMP is involved in this energy conversion process by helping to regenerate ATP from ADP, ensuring a continuous supply of energy for muscle contraction.
Contraction
For a really good explanation of this watch the history channels power plants episode. it is available on i tunes and it explains the entire process.
inspirationInpiration involves contraction of muscles. This is an energy requiring process
Photosynthesis. The process of moving water from roots to leaves is called transpiration through a process known as the transpiration stream. Photosynthesis is the process where plants convert light energy into chemical energy to produce glucose.
ATP (adenosine triphosphate) is the energy source that powers muscle contraction. When a muscle needs to contract, ATP is broken down into ADP (adenosine diphosphate) and inorganic phosphate, releasing energy that is used to fuel the contraction process. This energy allows the muscle fibers to slide past each other, generating the force needed for movement. In essence, ATP is essential for providing the energy needed for muscle contraction to occur.
An example of energy coupling is ATP hydrolysis driving an endergonic reaction, such as muscle contraction. Here, the energy released by breaking down ATP is used to power the cellular process of muscle contraction. This coupling of energy allows for the non-spontaneous reaction to occur.
b
Respiration.
ATP is used in muscle contraction to provide energy for the movement of muscle fibers. When a muscle contracts, ATP is broken down into ADP and phosphate, releasing energy that powers the movement of the muscle fibers. This energy is needed for the myosin heads to bind to actin filaments and generate the force required for muscle contraction.
Chemical energy stored in the muscles is converted to thermal energy during muscle contraction. This process is not 100% efficient, with some energy being lost as heat.