Inspiration happens when the pressure inside the lungs is lower than the atmospheric pressure (outside) and air rushes into the lungs. Expiration is when the air inside the lungs is higher than the atmospheric pressure and the air rushes out of the lungs. If the intrapleural pressure (pressure within the pleura of the lungs) isn't maintained then the pressure in the lungs can't differentiate between inspiration and expiration and so the lung collapses.
The lung will collapse (atelectasis) because the negative intrapleural pressure gradient that keeps the lung inflated has is now at equilibrium with atmospheric pressure.
The partial vacuum in the intrapleural space helps maintain the lungs' inflation and prevents lung collapse by creating a negative pressure that opposes the natural elastic recoil of the lungs. This vacuum also helps keep the lungs in close contact with the chest wall, allowing for efficient gas exchange during respiration.
Intrapleural pressure is maintained by the opposing forces of the elastic recoil of the lung and chest wall. During inspiration, the diaphragm contracts and the intercostal muscles expand the thoracic cage, causing a decrease in intrapleural pressure. This negative pressure helps keep the lungs inflated.
A pneumothorax, or a collapsed lung.
The intrapleual pressure is always below atmospheric pressure. Because of the connection between the two plurae which is similar to two wet pieces of paper adhered to each other, the negative intrapleural pressure helps to expand the lungs during ventilation. If intrapleural pressure was equal to atmospheric pressure, the lungs would collapse. Such a case is seen in a penetration of the thoracic cavity (pneumothorax), where a puncture in the thoracic cavity, and subsequently the plurae, will result in a collapsed lung.
Intrapulmonary pressure is the pressure inside the lung alveoli, while intrapleural pressure is the pressure in the pleural cavity. During normal breathing, intrapleural pressure is lower than intrapulmonary pressure, creating a pressure gradient that helps keep the lungs inflated.
firstly the intraplural cavity is a closed space and pressure change is due to increased volume. For example with the contraction of the diaphram causing the intraplural cavity to increase in size and therefore reducing the pressure causing inspiration. Since the intraplural space is attached to the lungs, the lungs also expands, theoretically increasing space and therefore reducing volume. So if the intraplural pressure down, lung pressure will also go down and vise versa with exhilation. hope that helps.
The affected lung would collapse or not be able to expand fully, so lung ventilation would decrease.
Intrapulmonary refers to inside the lungs, specifically within the lung tissue itself. Intrapleural refers to within the pleural cavity, the space between the membranes surrounding the lungs.
Equal pressure point (EPP) is the point where Intrapleural pressure and Alveolar pressure are equal. This is similar to the Starling resistor concept in the lung. Instead of flow being determined by the difference between alveolar and mouth pressure- flow is determined by the difference between alveolar and Intrapleural pressure difference. In forced expiration, both intrapleural pressure and alveolar pressure will increase. However alveolar pressure will decrease along the length of the airway until a pressure of zero at the mouth, whereas intrapleural pressure will remain the same. Therefore there will be a point where intrapleural pressure will be equal and subsequently greater than alveolar pressure. If the EPP occurs in the larger cartilaginous airways, the airway remains open. However, if the EPP is in the smaller airways, it will collapse. Increasing the force of expiration does not overcome EPP since it will increase both alveolar and intrapleural pressure. Another interesting concept is that EPP moves distally as expiration progresses because as air leaves the alveolar unit, the pressure in the alveolar decreases hence the pressure in the airway decreases as well. EPP is the cause of dynamic airway compression.
well, first of all the left lung at a certain point in history compresses until its hard to breath and the right lung at this point expands. This is unatural.
Pressure on the lung leading it to collapse