answersLogoWhite

0

The Tyndall effect occurs when light is scattered by particles in a colloid or very fine suspension. Smoke consists of tiny solid particles dispersed in air, which are large enough to scatter light but small enough to remain suspended. When a beam of light passes through smoke, these particles scatter the light, making the beam visible. This phenomenon highlights the presence of the small particles in the smoke.

User Avatar

AnswerBot

2w ago

What else can I help you with?

Related Questions

Does a sugar solution show the Tyndall effect?

No, a sugar solution does not typically show the Tyndall effect. The Tyndall effect is the scattering of light by colloidal particles, but sugar molecules are generally too small to scatter light effectively.


Will rubber show tyndall effect?

No, rubber does not show the Tyndall effect. The Tyndall effect is the scattering of light by colloidal particles or particles suspended in a transparent medium, which causes the light to be visible as a beam. Rubber does not have the scattering properties required to exhibit this effect.


Why does solution of Sodium Chloride not show Tyndall effect?

The key word here is "solution". Solutions do not exhibit the Tyndall effect; if something does exhibit the Tyndall effect, that's a good indication that it is not a solution.


Does clear glass show Tyndall effect?

No, clear glass does not typically exhibit the Tyndall effect. The Tyndall effect is the scattering of visible light by colloidal particles in a transparent medium, whereas clear glass lacks these colloidal particles.


Does salt solution show slow tyndall effect?

No, salt solution does not typically show the Tyndall effect because the particles in a salt solution are dissolved at the molecular level and are too small to scatter light significantly. The Tyndall effect is typically observed with colloidal solutions where the particles are larger and can scatter light.


Does a emulsion show the Tyndall effect?

yes.because when we are vigorous shaking the solution of two dissimilar liquids it it ii mix for 1 or 2 seconds .let it be the solution for 1 or 2 minutes it ll show the Tyndall effect ...so we can observe Tyndall effect in an emulsion solution .


Which exhibits Tyndall effect?

Colloidal solutions exhibit the Tyndall effect, where light is scattered by large particles or molecules in the solution, making the beam visible. This effect is not observed in true solutions where the particles are too small to scatter light. Examples of colloidal solutions that exhibit the Tyndall effect include milk, fog, and smoke.


A solution shows a Tyndall effect or soap shows Tyndall effect?

The Tyndall effect is the phenomenon where light is scattered by particles in a colloidal solution or suspension, making the beam visible. If a solution is showing the Tyndall effect, it indicates the presence of suspended particles that are large enough to scatter light. In the case of soap, the Tyndall effect may be observed when light is scattered by micelles or other structures in the soap that are similar in size to the wavelength of visible light.


Who gave their name to the Tyndall effect?

The Tyndall effect, or Tyndall scattering, was named after 19th century physicist John Tyndall. It has to do with light scattering through particles in a suspension.


The scattering of light by a colloid is called?

The scattering of light by a colloid is called Tyndall effect. This effect occurs when light is scattered by particles within a colloid, making the beam of light visible due to the reflection and absorption of light by the colloidal particles.


What is tandal effect?

The Tyndall effect is the scattering of light by colloidal particles in a transparent medium. This phenomenon causes the particles to become visible as they scatter light, creating a visible beam of light passing through the medium. The Tyndall effect can be observed in systems such as smoke, fog, or colloidal solutions.


How can the Tyndall effect to be used to distinguish between a colloid and a solution?

The Tyndall effect is specific for colloids, not for solutions.