answersLogoWhite

0

What else can I help you with?

Related Questions

The magnitude of the voltage induced in a conductor moving through a stationary magnetic field depends on the what?

The magnitude of the voltage induced in a conductor moving through a stationary magnetic field depends on the length and the speed of the conductor.


Force on a current-carrying conductor?

When a current-carrying conductor is placed in a magnetic field, a force is exerted on the conductor due to the interaction between the magnetic field and the current. This force is known as the magnetic Lorentz force and its direction is perpendicular to both the magnetic field and the current flow. The magnitude of the force depends on the strength of the magnetic field, the current flowing through the conductor, and the length of the conductor exposed to the magnetic field.


The magnitude of the voltage induced in a conductor moving through a stationary magnet field depends on the?

The speed of the conductor through the magnetic field, which translates into the number of magnetic lines of force the conductor can cut per unit time, will determine the magnitude of the voltage induced in the conductor. As an additional factor, if a longer piece of wire can be moved through the magnetic field, it will induce more voltage as well. The more speed we can put on the conductor, and the more of the conductor we can move through the magnetic field, the more voltage we can induce in the conductor.


What determines the strength of a magnetic field?

factors on which magnetic field a bar magnet depends :- 1. pole strength of the magnet 2. medium in which the bar magnet is present(since the permittivity changes) factors on which external magnetic field(B) of a current carrying coil depends:- 1. the amount of current flowing through the conductor 2. the perpendicular distance of the point from the conductor. 3. medium in which the conductor is present(since the permittivity changes)


Why and when does a current carrying conductor kept in a magnetic field experiences a force list factor on which the direction of this force depend State the rule which may be used to determine the di?

Current carrying conductor will have magnetic lines around it. So when it is kept perpendicular to the magnetic field then the force would be maximum. The force depends on 1. magnitude of current 2. Magnetic field induction 3. Angle between the direction of current and magnetic field. Fleming's Left hand rule is used to find the direction of force acting on the rod


What is the magnitude of the magnetic flux through this circle due to a uniform magnetic field?

The magnitude of the magnetic flux through a circle due to a uniform magnetic field depends on the strength of the magnetic field, the area of the circle, and the angle between the magnetic field and the normal to the circle. The formula for magnetic flux is given by Φ = BAcos(θ), where B is the magnetic field strength, A is the area of the circle, and θ is the angle between the magnetic field and the normal to the circle.


Why does current carrying conductor experience force when kept near a magnet?

The current carrying conductor has a magnetic field of of its own so when it comes in contact with with another magnetic field it experiences a force which is given by fleming's left hand rule.The force depends upon :direction and the strength of the magnetic fielddirection and the strenth of the current


What does the strength of the magnetic field surrounding a current carrying wire depend on?

The strength of the magnetic field surrounding a current-carrying wire depends on the magnitude of the current flowing through the wire. The magnetic field strength also depends on the distance from the wire, with the field becoming weaker as the distance increases. Additionally, the material surrounding the wire can affect the strength of the magnetic field.


Are all magnetic materials good conductor of electricity?

Not all magnetic materials are good conductors of electricity. Some magnetic materials, like iron, nickel, and cobalt, are also good conductors of electricity, while others, like magnetite, are poor conductors. The conductivity of a material depends on factors such as its crystal structure and the mobility of its electrons.


What are the factors affecting the electromagnetic induction?

Factors affecting electromagnetic induction include the strength of the magnetic field, the velocity at which the magnetic field changes, the angle between the magnetic field and the conductor, and the number of turns in the coil. Additionally, the material of the conductor and the frequency of the changing magnetic field can also impact electromagnetic induction.


What does the moving charge depend on?

The moving charge depends on the magnitude of the charge, the speed of the charge, and the magnetic field it is moving through. The direction of the moving charge also affects the force experienced.


What changes the flow of electrons in an alternating current?

first of all the voltage doesn't change what changes is the current direction the way they do it is by using magnet . electrons tend to escape from the magnetic field . you can find on you tube how a motor works for better idea.