answersLogoWhite

0

(a) directly with its square root.(b) not at all if it can be considered as a point mass which is significantly greater than the "string". Otherwise corrections are necessary.

(c) not if the angle is small. Otherwise corrections are necessary.

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

How does the period of a pendulum vary theoretically with angular displacement?

In the standard derivation of pendulum characteristics, at least through high schooland undergraduate Physics, an approximation is always made that assumes a smallangular displacement.With that assumption, the angular displacement doesn't appear in the formula forthe period, i.e. the period depends on the pendulum's effective length, and isindependent of the angular displacement.


How does the period of a pendulum difference theoretically with angular displacement and mass of ball for simple pendulum?

According to the mathematics and physics of the simple pendulum hung on a massless string, neither the mass of the bob nor the angular displacement at the limits of its swing has any influence on the pendulum's period.


What 3 variables that might affect the number of cycles the pendulum makes in 15 seconds?

The length of the pendulum, the angular displacement of the pendulum and the force of gravity. The displacement can have a significant effect if it is not through a small angle.


What is the relationship between the length of a pendulum and its angular acceleration?

The relationship between the length of a pendulum and its angular acceleration is that a longer pendulum will have a smaller angular acceleration, while a shorter pendulum will have a larger angular acceleration. This is because the length of the pendulum affects the time it takes for the pendulum to swing back and forth, which in turn affects its angular acceleration.


What are the factor affecting on the simple pendulum?

The factors affecting a simple pendulum include the length of the string, the mass of the bob, the angle of displacement from the vertical, and the acceleration due to gravity. These factors influence the period of oscillation and the frequency of the pendulum's motion.


How does a pendulums period vary with the length of its mass With Gravitational acceleration?

The length of the pendulum is measured from the pendulum's point of suspension to the center of mass of its bob. Its amplitude is the string's angular displacement from its vertical or its equilibrium position.


What is the formula for the angular frequency of a simple pendulum in terms of the acceleration due to gravity and the length of the pendulum?

The formula for the angular frequency () of a simple pendulum is (g / L), where g is the acceleration due to gravity and L is the length of the pendulum.


What are the physical parameters in the investigation of a simple pendulum?

The physical parameters of a simple pendulum include (1) the length of the pendulum, (2) the mass of the pendulum bob, (3) the angular displacement through which the pendulum swings, and (4) the period of the pendulum (the time it takes for the pendulum to swing through one complete oscillation).


How does the period of a pendulum difference theoretically with length for simple pendulum?

The period is directly proportional to the square root of the length.


What is the formula for calculating the angular frequency of a simple pendulum?

The formula for calculating the angular frequency of a simple pendulum is (g / L), where represents the angular frequency, g is the acceleration due to gravity, and L is the length of the pendulum.


How does the period of a pendulum vary theoretically with a angular displacement b mass of bob and c length?

(a) directly with its square root.(b) not at all if it can be considered as a point mass which is significantly greater than the "string". Otherwise corrections are necessary. (c) not if the angle is small. Otherwise corrections are necessary.


What affects a pendulum?

The mass of the pendulum, the length of string, and the initial displacement from the rest position.