A class three lever is where the load is one side of the force and the fulcrum is on the other side of the force. An example is a pair of tweezers. Another example is the secondary lever in a pair of fingernail clips, i.e. the part that closes on the fingernail. (The first lever in a pair of fingernail clips, i.e. the part that you press on, is an example of a second class lever.)
There are three different Classes of levers. Class One Levers have a fulcrum in the middle. Class Two Levers have a resistance in the middle. Class Three Levers have effort in the middle.
classes 1 and 2
There are three classes of levers: first-class, second-class, and third-class. These classes are based on the relative positions of the fulcrum, effort, and load.
Levers are divided into three classes based on the relative positions of the input force, the fulcrum, and the output force. Class 1 levers have the fulcrum positioned between the input and output forces, class 2 levers have the output force between the input force and the fulcrum, and class 3 levers have the input force between the fulcrum and the output force.
Levers are grouped into three classes based on the relative positions of the load, effort, and fulcrum. Class 1 levers have the fulcrum between the load and the effort. Class 2 levers have the load between the fulcrum and the effort. Class 3 levers have the effort between the fulcrum and the load.
i forgot but if you get mad please firgive me but dusews
All the levers in the world can be grouped in 3 classes, depending on how the effort point, the load point, and the fulcrum are lined up. Class I . . . fulcrum (pivot) is in the middle. Class II . . . load is in the middle. Class III . . . effort is in the middle. Each individual lever can only belong to one class.
Levers are grouped into three classes based on the relative position of the effort, load, and fulcrum. Class 1 levers have the effort and load on opposite sides of the fulcrum, Class 2 levers have the load between the effort and fulcrum, and Class 3 levers have the effort between the load and fulcrum.
Levers consist of a rigid bar or beam that pivots on a fixed point called a fulcrum. They are used to amplify force or transmit motion. Levers are divided into three classes based on the relative positions of the input force, output force, and fulcrum.
There are multiple classes of levers, which can be used for varying situations. For example, some can be used for lifting tools, whereas others can be used for pulling large amounts of weight. Often, it is not otherwise possible to move large amounts of weight without these varying uses of levers, which speaks to their usefulness.
first class The point about which a lever rotates is called the fulcrum
on the position of the fulcrum