Potential Difference
There must be a potential difference between the two points in the conductor in order to maintain a flow of charge. This potential difference creates an electric field that drives the charges to move from one point to another.
The electric potential inside a conductor is constant and equal to the potential at its surface. This is because the electric field inside a conductor is zero, and any excess charge on the conductor redistributes itself to maintain equilibrium with the surrounding environment.
The electric field inside a conductor is zero, and the surface charge resides on the outer surface of the conductor. This means that the electric field at the surface of a conductor is perpendicular to the surface and proportional to the surface charge density.
The central charge of a spherical conductor with a cavity affects the electric field distribution within the conductor. The electric field inside the conductor is zero, and the charge is distributed on the surface. The central charge influences how the charge is distributed on the surface, which in turn affects the electric field distribution within the conductor.
Yes, the charges inside a conductor will rearrange when an external charge is placed near or on the surface of the conductor, resulting in an induced electric field inside the conductor. This induced electric field will influence the external charge's behavior without the need for direct contact between the charges.
well it is not possible to transfer all charge all charge from one body to another coz this process between two bodies stops when their potential difference becomes same n thus all charge does not gets transferred.
The charge density inside a conductor affects its electrical properties. A higher charge density can lead to better conductivity and faster flow of electricity within the conductor. Conversely, a lower charge density may result in poorer conductivity and slower electrical flow.
Potential difference between the ends of a conductor refers to the electrical energy difference per unit charge between two points in the conductor. It is commonly known as voltage and is measured in volts. A potential difference is necessary for the flow of electric current in a conductor.
When an electric charge moves through a conductor, an electric current is generated in the conductor. The flow of electrons creates a flow of current in the conductor, which is the movement of electric charge through the material.
The ability of a conductor to take on charge is called its conductance.
When a conductor is connected to "ground," it becomes neutral and carries no charge.
Factors that maintain the flow of charges in a conductor include the presence of an electric field, the availability of mobile charge carriers (such as electrons in metals), and the absence of significant resistance that would impede the flow of charges. Additionally, maintaining a potential difference across the conductor helps to sustain the flow of charges.