The law of contrapositive states that a conditional statement of the form "If P, then Q" (P → Q) is logically equivalent to its contrapositive, "If not Q, then not P" (¬Q → ¬P). This means that if the original statement is true, the contrapositive must also be true, and vice versa. This principle is widely used in mathematical proofs and logical reasoning to demonstrate the validity of arguments.
If p->q, then the law of the contrapositive is that not q -> not p
none
The word contrapositive is a noun. The plural noun is contrapositives.
If a conditional statement is true, then so is its contrapositive. (And if its contrapositive is not true, then the statement is not true).
The converse of an inverse is the contrapositive, which is logically equivalent to the original conditional.
The second statement is the contrapositive of the first. The contrapositive of a statement reverses and negates both the hypothesis and conclusion. In logical terms, if the first statement is "If P, then Q," the contrapositive is "If not Q, then not P."
The contrapositive would be: If it is not an isosceles triangle then it is not an equilateral triangle.
If a figure is not a triangle then it does not have three sides ,is the contrapositive of the statement given in the question.
A contrapositive means that if a statement is true, than the characteristics also pertains to the other variable as well.
if the statement is : if p then q converse: if q then p inverse: if not p then not q contrapositive: if not q then not
The contrapositive of the statement "All journalists are pessimists" is "If someone is not a pessimist, then they are not a journalist." This reformulation maintains the same truth value as the original statement, meaning that if the original statement is true, the contrapositive is also true.
The statement "All red objects have color" can be expressed as " If an object is red, it has a color. The contrapositive is "If an object does not have color, then it is not red."