Translational degrees of freedom refer to the independent ways in which an object can move in space. In three-dimensional space, an object has three translational degrees of freedom, corresponding to movement along the x, y, and z axes. This concept is crucial in fields such as physics and engineering, where understanding the motion of objects is essential for analyzing systems.
Water has 3 degrees of freedom, corresponding to the three translational motion directions.
The man's freedom depends on the dimensions of the staircase and the clothes he is wearing, plus any other encumbrances. For example, if the staircase is too tight to move in, or if he is straightjacketed and chained to the banister, his degree of freedom is zero. If the staircase is spacious enough for him to jump around in, he has at least three degrees of freedom for linear motion, and at least three for rotational motion. If he possesses the power of time travel or passage through other dimensions, he will have still more degrees of freedom. All of these may be curtailed by political influences, however.
A tri-atomic molecule should have 3 vibrational degrees of freedom (one for each "end" atom vibrating on its bond with the central atom and one for the flexing of the bonds like scissors opening and closing). If it is non-linear, it should also have a three rotational degrees of freedom. All molecules (including a triatomic one) will have 3 degrees of freedom for translational motion. All totaled, it will have 3+3+3 = 9 degrees of freedom. Note that this does not address the question of independence of the degrees of freedom - for example - if the two "end" atoms are identical, not all the rotational degrees of freedom are independent.
arm has not 6 but 7 degree of freedom.. 1.shoulder have 1 degree of freedom. 2.yaw have 2 degree of freedom. 3.roll have 3 degree of freedom. 4.elbow have 4 degree of freedom. 5.wrist have 5degree of freedom. 6.wrist yaw have a 6degree of freedom. 7.wrist roll have a 7 degree of freedom.
a superstructure has negative degree of freedom... ;0
The degree of freedom of a rigid body when one point of the body is fixed is zero. This means that the rigid body has no motion at all as it is completely pinned down by the fixed point. Any movement of the rigid body would cause it to become non-rigid.The degrees of freedom of a rigid body are expressed in terms of six independent parameters which are:Translation in three orthogonal directionsRotation around three orthogonal axesWhen one point of the rigid body is fixed the body cannot move in any of these directions resulting in a degree of freedom of zero.
In equilibirium, at any temperature the average kinetic energy per molecule associated with each degree of freedom is equal to (KT)/2 where K is the bolsmann's constant and T is the temperature.
degree of freedom
Science Translational Medicine was created in 2009.
Degree of freedom=c-p+2;c=1;p=11-1+2=2
Degree of freedom in terms of vibration refers to the number of independent ways a system can move or oscillate. For example, a simple pendulum has one degree of freedom, while a mass-spring system has two degrees of freedom. The degree of freedom determines the number of independent coordinates needed to describe the system's motion fully.
There are 2 possible answers depending on the context of ENTROPY Possible Answer 1: A measure of the velocity of the dispersal or degradation of energy. Possible Answer 2: an oxymoron