To make 1 liter of a solution with a concentration of 2 moles per liter, you would need to dissolve 2 moles of the solute in enough solvent to make up a final volume of 1 liter. This is done by adding the solute gradually to the solvent while stirring until it is completely dissolved.
You would need 1.25 moles of ammonium hydroxide to make one liter of a 1.25 mol/L solution.
To make a 1.25 M solution of lithium chloride in one liter of total solution, you need 1.25 moles of lithium chloride. This is because the concentration of a solution in moles per liter is equal to the number of moles of solute divided by the volume of the solution in liters.
1 mole = 106 micromoles
Molarity is calculated as moles of solute divided by volume of solution in liters. In this case, you have 2 moles of sodium chloride in a 0.5 liter solution. So the molarity would be 2 moles / 0.5 L = 4 M.
Molar mass of NaCl =~58.4 g/mole0.1 N NaCl = 0.1 moles/liter To make 1 liter of 0.1N NaCl thus requires 0.1 moles/liter = 0.1 moles x 58.4 g/mole = 5.84 moles Dissolve 5.84 g (6 g using 1 sig. fig.) in a final volume of 1 liter to make 0.1N NaCl
There are a few types of animals that make nests in the ground. These animals include snakes, rats, mice, rabbits, and moles.
3.00 M, or 3 moles per (L) "liter" calls for having 3 moles per liter of the solution. The question asks how many moles must be in 250ml of a solution that has 3 moles per Liter. You must ask yourself what percent of 1 Liter is 250mls? Since there are a thousand ml in one liter, (1000ml=1L), then 250ml is exactly 25% of a Liter, or .25L. So, 250ml can only hold 25% of the 3.00 Molarity. Meaning that you multiply 3 x .25 and get .75 moles.
The answer is 2,68 moles.
To convert grams per liter to moles per liter, you need to know the molar mass of the substance in grams per mole. Divide the given mass in grams per liter by the molar mass to get moles per liter. This conversion allows you to express the concentration of a substance in terms of its molecular weight, facilitating comparisons and calculations in chemistry.
There would be 0.1 moles of NaCl present in 1 liter of a 0.1M solution of sodium chloride. This is based on the definition of molarity which is moles of solute per liter of solution.
If you have 2 moles of K+ for every mole of K2S and Molarity (M) is Moles per Liter. Then you know that you have .30 M of K2S. The way that you do that is setting up a series of conversion factors like so:(.15moles k2s/liter) x (2 moles of K/ 1 mole of K2S) = .30 moles k/ liter.The moles of K2S cancel out and you are left with moles of K per liter.