answersLogoWhite

0

The entire sequence would consume 83mb worth of characters.

The first 100 are as follows:

1-10: i, ii, iii, iv, v, vi, vii, viii, ix, x

11-20: xi, xii, xiii, xiv, xv, xvi, xvii, xviii, xix, xx

21-30: xxi, xxii, xxiii, xxiv, xxv, xxvi, xxvii, xxviii, xxix, xxx

31-40: xxxi, xxxii, xxxiii, xxxiv, xxxv, xxxvi, xxxvii, xxxviii, xxxix, xl

41-50: xli, xlii, xliii, xliv, xlv, xlvi, xlvii, xlviii, xlix, l

51-60: li, lii, liii, liv, lv, lvi, lvii, lviii, lix, lx

61-70: lxi, lxii, lxiii, lxiv, lxv, lxvi, lxvii, lxviii, lxix, lxx

71-80: lxxi, lxxii, lxxiii, lxxiv, lxxv, lxxvi, lxxvii, lxxviii, lxxix, lxxx

81-90: lxxxi, lxxxii, lxxxiii, lxxxiv, lxxxv, lxxxvi, lxxxvii, lxxxviii, lxxxix, xc

91-100: xci, xcii, xciii, xciv, xcv, xcvi, xcvii, xcviii, xcix, c

Thereafter, the sequence continually repeats, first prefixed with a 'c' until we reach 'cc', for 200. Then repeat again with another prefixed 'c' until we reach 'ccc' for 300. We prefix one more 'c' until we reach 'cccxcix' (399). 400 is represented by 'cd', which becomes the prefix for another sequence until 'cdxcix' (499). 500 is 'd', which begins a new repetition of all the numbers from 1-499, prefixed with 'd'. 999 is 'cmxcix'.

1000 is 'm', which begins the entire sequence again, until 'mm' (2000), and 'mmm' (3000). The last possible number is 'mmmcmxcix' (3999).

That's as far as we can go using this system (no symbol may repeat more than 3 times in succession). From this point on we must switch to the original symbols for 'm' and 'd' that begins with 'c|ᴐᴐc|ᴐc|ᴐ|ᴐ' (4000) and repeatedly counts from 1 to 999 using this prefix.

Under this system, 'm' is replaced with 'c|ᴐ' (1000) and 'd' is replaced with '|ᴐ' (500).

5000 is represented by '|ᴐᴐ' (the additional 'ᴐ' multiplies 500 by 10).

6000 is '|ᴐᴐc|ᴐ' (5000 + 1000).

7000 is '|ᴐᴐc|ᴐᴐ|ᴐ' (5000 + 1500 + 500). The additional 'ᴐ' in 'c|ᴐᴐ' adds 500 to 1000. An alternative would be to use the prefix '|ᴐᴐc|ᴐc|ᴐ' (5000 + 1000 + 1000), which is probably correct, but my program always subtracts the highest possible value, so I always use the former notation.

8000 is '|ᴐᴐc|ᴐᴐc|ᴐ|ᴐ' (5000 + 1500 + 1000 + 500) or '|ᴐᴐc|ᴐc|ᴐc|ᴐ' (5000 + 1000 + 1000 + 1000).

9000 is 'c|ᴐcc|ᴐᴐ' (10,000 - 1000).

10,000 is 'cc|ᴐᴐ'. Each extra 'c' and 'ᴐ' (together) multiply the value by a factor of 10. It's easier to think of the extra 'c' and 'ᴐ' symbols as ellipsis enclosing the value. This can be extended to give 'ccc|ᴐᴐᴐ' (100,000) and finally 'cccc|ᴐᴐᴐᴐ' (1,000,000).

To give an idea of this system, the final 100 numbers are as follows:

999901-999910: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐx

999911-999920: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxx

999921-999930: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxx

999931-999940: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxl

999941-999950: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxli, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxliii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxliv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxlix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐl

999951-999960: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐli, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐliii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐliv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlx

999961-999970: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxx

999971-999980: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxx

999981-999990: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxiii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxiv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐlxxxix, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxc

999991-1000000: ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxci, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxciii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxciv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcv, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcvi, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcvii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcviii, ccc|ᴐᴐᴐcccc|ᴐᴐᴐᴐcc|ᴐᴐccc|ᴐᴐᴐc|ᴐcc|ᴐᴐcc|ᴐxcix, cccc|ᴐᴐᴐᴐ

These symbols can be extended to multiply the value by a factor of 10, such that

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

What are the roman numerals up to 1 million?

roman numerals only go up to 1000, which is M


What is 12000000 in Roman numerals?

what is eightyfour million in roman numerals


What is a million in roman numerals?

Roman numerals can only go up to 4,999.


What is 8678767 in Roman Numerals?

Roman numerals really only go up to a million.


What is 9.100666 million in Roman numerals?

9,100,666 = ((CM))(C)DCLXVI in Roman numerals


What is the 1 in Roman Numerals?

The 1 in Roman numerals is represented by the letter "I".


What is 20 million in roman numerals?

((XX))


What represents 1 million in Roman Numerals?

A bar over a Roman numeral indicates that the number is to be multiplied 1000 times. M represents 1000, so an M with a bar over it would be one million


How do you represent 1.7 million in Roman Numerals?

It is: (MDCC) which means 1,000*1,700 = 1,700,000


How do you I write Roman number 11?

Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.Eleven in Roman numerals is XI.


What is 1 million in Roman numerals?

In Roman numerals, 1 million is represented as a combination of symbols. The Roman numeral for 1 million is written as M with a bar over it, which signifies that the value is multiplied by 1,000. This symbol is derived from the Latin word "mille," meaning thousand, and is used to represent large numbers in Roman numerals.


What would 21 1 90 be in Roman numerals?

21 in Roman numerals is XXI. 1 in Roman numerals is I. 90 in Roman numerals is XC. So, 21 1 90 would be XXI I XC in Roman numerals.