answersLogoWhite

0

What else can I help you with?

Continue Learning about Math & Arithmetic

How do you work out Ln 24 - ln x equals ln 6?

18


If you have a number with the exponent x how do you find the answer?

Take the natural logarithm (ln) of both sides of the equation to cancel the exponent (e). For example, ify=Aexlog transform both sides and apply the rules of logarithms:ln(y)=ln(Aex)ln(y)=ln(A)+ln(ex)ln(y)=ln(A)+xrearrange in terms of x:x=ln(y)-ln(A), or more simplyx=ln(y/A)


Solve or x 2 ln 9 plus 2 ln 5 equals 2 ln x minus 3?

2 ln(9) + 2 ln(5) = 2 ln(x) - 3ln(81) + ln(25) = ln(x2) - 37.61332 = ln(x2) - 3ln(x2) = 10.61332ln(x) = 5.30666x = e5.30666 = 201.676 (rounded)


Do any positive real numbers alpha and beta exist such that lnalpha times beta equals lnalpha plus lnbeta and if so what are they?

I assume the question is NOT about ln(a*b) = ln(a) + ln(b) because that is true for all positive real a and b. Instead, you want a solution to ln(a) * b = ln(a) + ln(b) or, ln(a) * (b-1) = ln(b) ln(a) = ln(b)/(b-1) ln(a) = ln[b1/(b-1)] Exponentiating, a = b1/(b-1) For any real number b > 1, a given by the above equation will meet your requirements.


What is the dervative of x pwr x pwr x?

For the function: y = x^x^x (the superscript notation on this text editor does not work with double superscripts) To solve for the derivative y', implicit differentiation is needed. First, the equation must be manipulated so there are no x's raised to x's on the right side of the equation. So, both sides of the equation must be input into a natural logarithm, wherein we can use the properties of logarithms to remove the superscripted powers of the right side: ln(y) = ln(x^x^x) ln(y) = xxln(x) ln(y)/ln(x) = xx ln(ln(y)/ln(x)) = xln(x) eln(ln(y)/ln(x)) = exln(x) ln(y)/ln(x) = exln(x) ln(y) = ln(x)exln(x) Now there are no functions raised to functions (x's raised to x's). Deriving this equation yields: (1/y)(y') = ln(x)exln(x)(x(1/x) + ln(x)) + exln(x)(1/x) = ln(x)exln(x)(1 + ln(x)) + exln(x)(1/x) = exln(x)(ln(x)(1+ln(x)) + (1/x)) Solving for y' yields: y' = y[exln(x)(ln2(x) + ln(x) + (1/x))] or y = xx^x ln(y) = ln(x)x^x ln(y) = xxln(x) ln(y) = exlnxln(x) y'/y = exlnx[ln(x) + 1)ln(x) + exlnx(1/x) y' = y[exlnx(ln2(x) + ln(x) + 1/x)] y' = xx^x[exlnx(ln2(x) + ln(x) + 1/x)]

Related Questions

Where is the Marathi Mandal Of Philadelphia Inc in North Wales Pennsylvania located?

The address of the Marathi Mandal Of Philadelphia Inc is: 123 Newport Ln, North Wales, PA 19454-1459


How would you solve ln 4 plus 3 ln x equals 5 ln 2?

Ln 4 + 3Ln x = 5Ln 2 Ln 4 + Ln x3= Ln 25 = Ln 32 Ln x3= Ln 32 - Ln 4 = Ln (32/4) = Ln 8= Ln 2


How do you work out Ln 24 - ln x equals ln 6?

18


Why is the symbol for natural log ln?

ln(ln)


If you have a number with the exponent x how do you find the answer?

Take the natural logarithm (ln) of both sides of the equation to cancel the exponent (e). For example, ify=Aexlog transform both sides and apply the rules of logarithms:ln(y)=ln(Aex)ln(y)=ln(A)+ln(ex)ln(y)=ln(A)+xrearrange in terms of x:x=ln(y)-ln(A), or more simplyx=ln(y/A)


What is the derivative of y equals xlnx?

Use the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln x


What is equivalent to ln 6 plus ln 4?

You can also write this as ln(6 times 4)


Solve or x 2 ln 9 plus 2 ln 5 equals 2 ln x minus 3?

2 ln(9) + 2 ln(5) = 2 ln(x) - 3ln(81) + ln(25) = ln(x2) - 37.61332 = ln(x2) - 3ln(x2) = 10.61332ln(x) = 5.30666x = e5.30666 = 201.676 (rounded)


How do you solve for x 3 ln x - ln 3x equals 0?

3 ln(x) = ln(3x)ln(x3) = ln(3x)x3 = 3xx2 = 3x = sqrt(3)x = 1.732 (rounded)


Simplify In e to the 7th power?

It depends. If you mean (ln e)7, then the answer is 1, since (ln e) = 1. If you mean ln(e7), then the answer is 7, since ln(e7) = 7 (ln e) and (ln e) = 1.


Is there a function where the first derivative goes to infinity for x going to 0 and where the first derivative equals 0 when x is 1?

Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.Yes, the function ln(x) where ln is the logarithm to base e.


What is the equation for exponential interpolation?

The correct formula for exponential interpolation is: y =ya*(yb/ya)^[(x-xa)/(xb-xa)], xa<x<xb and also, x=xa*[ln(yb)-ln(y)]/[ln(yb)-ln(ya)]+xb*[ln(y)-ln(ya)]/[ln(yb)-ln(ya)], ya<y<yb