The discriminant of the quadratic equation: y = ax^2 + bx + c is b^2 - 4ac
A quadratic equation has one discriminant.
If the discriminant of the quadratic equation is zero then it will have 2 equal roots. If the discriminant of the quadratic equation is greater than zero then it will have 2 different roots. If the discriminant of the quadratic equation is less than zero then it will have no roots.
No. By definition, a quadratic equation can have at most two solutions. For a quadratic of the form ax^2 + bx + c, when the discriminant of a quadratic, b^2 - 4a*c is positive you have two distinct real solutions. As the discriminant becomes smaller, the two solutions move closer together. When the discriminant becomes zero, the two solutions coincide which may also be considered a quadratic with only one solution. When the discriminant is negative, there are no real solutions but there will be two complex solutions - that is those involving i = sqrt(-1).
b^2 - 4ac, the discriminant will tell you that a quadratic equation may have one real solution( discriminant = 0 ) , two real solutions( discriminant > 0 ), or no real solutions( discriminant < 0 ).
The discriminant
A quadratic equation has one discriminant.
The form of the quadratic is ax2+bx+c, so the discriminant is b2-4ac.
If the discriminant of the quadratic equation is zero then it will have 2 equal roots. If the discriminant of the quadratic equation is greater than zero then it will have 2 different roots. If the discriminant of the quadratic equation is less than zero then it will have no roots.
If the discriminant of a quadratic equation is less then 0 then it will have no real solutions.
No. By definition, a quadratic equation can have at most two solutions. For a quadratic of the form ax^2 + bx + c, when the discriminant of a quadratic, b^2 - 4a*c is positive you have two distinct real solutions. As the discriminant becomes smaller, the two solutions move closer together. When the discriminant becomes zero, the two solutions coincide which may also be considered a quadratic with only one solution. When the discriminant is negative, there are no real solutions but there will be two complex solutions - that is those involving i = sqrt(-1).
b^2 - 4ac, the discriminant will tell you that a quadratic equation may have one real solution( discriminant = 0 ) , two real solutions( discriminant > 0 ), or no real solutions( discriminant < 0 ).
If the discriminant of a quadratic equation is zero then it has two identical roots.
The discriminant
The discriminant is -32.
Because the square root of the discriminant is a component of the roots of the equation.
The discriminant must be a positive number which is not a perfect square.
The discriminant of the quadratic polynomial ax2 + bx + c is b2 - 4ac.