becuase its suppose to
when the material fails
Mild steel usually contains predominantly of Ferrite structure and it has got good ductility. The difference in stress-strain curve of Mild steel to other ductile materials is that it undergoes Multiple yielding. it occurs due to the fact that C and N segregate to dislocations.
On a stress strain curve the elastic limit is the point where the straight portion curve first starts to curve. When load is removed strain will return to zero. The yield point is a point on the curve just beyond the elastic limit. When load is removed strain will not return to zero. It will return approximately as a straight line parallel to the original, and have an offset strain value. The yield point offset is arbitrary but usually defined as 0.2% (.002 permanent strain) as most common strain devices can measure that amount.
jubo
The value of the Young's Modulus of Elasticity, which is an inherent property of the material
becuase its suppose to
stress strain curve details
A stress-strain curve typically has two segments because the material first deforms elastically before transitioning to plastic deformation. The initial linear region represents elastic deformation, where the material can return to its original shape after the stress is removed. The second region shows plastic deformation, where the material undergoes permanent deformation due to interatomic sliding or dislocation motion.
when the material fails
stress is directly proportional to strain up to the proportional limit. Their ratio is young's modulus.
By using stress-strain curve.
The stress-strain curve of a rubber band shows how the stress (force applied) and strain (deformation) are related. Initially, as stress increases, strain also increases proportionally. This is the elastic region where the rubber band returns to its original shape when the stress is removed. However, beyond a certain point, the rubber band reaches its limit and starts to deform permanently, known as the plastic region. The relationship between stress and strain on the curve helps us understand the material's behavior under different conditions.
The engineering stress-strain curve in shear is the same as the true stress-strain curve because, in shear, the definitions of stress and strain do not change significantly with the material's deformation. True stress accounts for the instantaneous area under load, while engineering stress uses the original area; however, in shear, the relationship remains linear up to the yield point, and the area reduction effect is minimal for typical shear tests. Thus, both curves reflect the same material behavior in shear deformation, leading to equivalent representations.
An infinite amount... for any given Strain, there is a corresponding Stress value. To see what I mean, plot a Stress Strain graph in excel using 10 sets of values, then do another using 20... the one with 20 has a smoother curve, see where I'm coming from?
see the following questionWhat_the_difference_between_true_strain_and_engineering_strain
This question probably is referring to a 2% secant modulus, which can be the tensile, flexural or compressive modulus (slope of a stress/strain curve) of a material that is determined from calculating the slope of a line drawn from the origin to 2% strain on a stress/Strain curve.
Mild steel usually contains predominantly of Ferrite structure and it has got good ductility. The difference in stress-strain curve of Mild steel to other ductile materials is that it undergoes Multiple yielding. it occurs due to the fact that C and N segregate to dislocations.