"http://wiki.answers.com/Q/How_are_a_magnets_magnetic_force_and_magnetic_field_different"
magnetic force
It experiences maximum force when it is placed perpendicular to the direction of magnetic field.
depends on the strenght of the magnet
Electric current, magnetic field intensity, length of the conductor, angle between the electric current and magnetic field
The magnetic field will be perpendicular to the electric field and vice versa.More DetailAn electric field is the area which surrounds an electric charge within which it is capable of exerting a perceptible force on another electric charge. A magnetic field is the area of force surrounding a magnetic pole, or a current flowing through a conductor, in which there is a magnetic flux. A magnetic field can be produced when an electric current is passed through an electric circuit wound in a helix or solenoid.The relationship that exists between an electric field and a magnetic field is one of electromagnetic interaction as a consequence of associating elementary particles.The electrostatic force between charged particles is an example of this relationship.
A magnetic field.
The 'magnetic field'
Yes, all magnets have a magnetic field. When a material becomes magnetized, it creates a magnetic field around itself that attracts or repels other materials. This magnetic field is the reason why magnets can exert force on other magnets or magnetic materials.
The electric field is a force field that surrounds electric charges and exerts a force on other charges, while the magnetic field is a force field that surrounds magnets and moving electric charges, exerting a force on other magnets or moving charges.
When a magnetic field interacts with a magnetic object, it can exert a force on the object, causing it to move. This occurs because the magnetic field induces a magnetic force on the object based on the orientation and strength of the magnets involved. The object will move in response to this force, either attracting or repelling depending on the alignment of the magnetic poles.
A magnetic field is a region around a magnet or a current-carrying wire where a magnetic force can act on other magnets or moving charges. The magnetic force is the force exerted by a magnetic field on a magnetic object or a moving charge. So, the magnetic field is what allows the magnetic force to act on objects within its influence.
The five properties of magnets are: Attraction and repulsion: Magnets can attract and repel other magnets or magnetic materials. Pole orientation: Magnets have two poles, north and south, that determine their orientation. Magnetic field: Magnets create a magnetic field around them that exerts a force on nearby objects. Retentivity: Magnets can retain their magnetic properties once magnetized. Induction: Magnets can induce magnetism in nearby materials without direct contact.
The force that surrounds magnetic objects is called a magnetic field. This field is responsible for the attractive and repulsive forces experienced between magnets and magnetic materials.
The force that attracts or repels between magnets is called magnetism. This force is caused by the alignment of the magnetic domains within the materials of the magnets, creating a magnetic field that interacts with other magnets.
Magnets create a magnetic field around them which exerts a force on other magnets within that field. This force is generated by the alignment of the magnetic domains within the magnets, causing them to attract or repel each other without touching.
A magnet has a magnetic field around it. The magnetic field causes a magnetic force that can attract objects to the magnet.
They are called permanent magnets. These magnets retain their magnetic field without the need for any external power source or force to maintain them.