Not sure what you mean. The equivalent (total) resistance in a parallel circuit is less than any individual resistance.
SMOKE!!! Yiii-haaaa! An ammeter is always as low a resistance as possible. That way, the current that you measure in a circuit using the meter will be the same as if the meter were not there. So putting an ammeter in parallel with a circuit means that you just short circuited the circuit you were intending to measure. Poof! There goes your ammeter!An ammeter has a very low internal resistance. So, if it is connected in parallel with a load, it will short-out that load. The resulting high current flowing through the ammeter may severely damage the meter (and possible harm the user), although most are fitted with fuses to protect them.
Always voltage constant in parallel circuit if you look your house wiring all are in parallel therefore 220 volt present in every house but current is different
Voltmeter should be connected always in parallel to a circuit ANSWER : IT should be in parallel except when used to measure current. Then it should be placed in series across a shunt.
Short circuit is the case when electricity, instead of travel through the design circuit path, jump across an unintended low resistance path and bypass the design circuit.A short circuit is a path for an electric current to travel through where there is very little resistance. This path is often, but not always, through a wire connected directly to a ground, and is often, but not always, unintentional.
An ideal voltmeter has infinite impedance(resistance). If you were to break the circuit and put it in series and try to make a measurement, it is easy to see that the circuit would act completely differently and your measurement would be wrong. An ideal ammeter is always connected in series because it has 0 resistance, so all of the current would flow through it, and not through the wire that you are trying to measure the current of.A better answer though is to think about what you are trying to measure. When you say something is 3 Volts, that is a difference between the voltages at two different points. If you want to see what the voltage drop across a resistor is, for example, you need to put one probe of the voltmeter on one side of the resistor and the other probe on the other side of the resistor. That setup is simply called being in parallel.Voltage is potential difference between two points, hence measured across or in parallel, where as current is measured in series since current flows (*)
no.because current always try to flow trough low resistance path.as short circuit has low resistance current pass trough short circuit
The potential difference remains the same over the components in parallel and the current splits up proportianally to the components conductances. The components conductances add up to give the combined conductance of the parallel circuit. Conductance is 1 / resistance
in parallel
Well, this is a nice question. I will just try to answer it. Note that the combined resistance in parallel will always be less than any of the individual resistances. In the parallel system, there is a separate independent path from the source to each resistance and back to the source, therefore each has the same voltage drop. This means that the voltage must be the same at each point in the parallel circuits. There are three rules governing simple parallel circuits of resistive elements: 1. Voltage across each resistor is the same as the voltage across the parallel combination. 2. The current flowing through the parallel combination is the sum of the current in the separate branches. 3. Summing resistance of a parallel circuit can be stated as follows: The reciprocal of the total resistance is equal to the sum of the reciprocals of each of the individual resistances. So that you can have more information about series and parallel circuits, just try to visit the website....: http://elpaso.apogee.net/foe/fcsppr.asp
An ammeter is connected in series. A voltmeter is connected in parallel. ammeter should always be connected in series instead of parallel becoz it is a low resistance device and we know that resistance is inversly proportional to current so more current will pass through it and if it is connected in parallel than it may get damaged
Ohm's Law says! R=V/I Resistance is directly proportional to Voltage. In series circuit, due to adding the resistance, total voltage will be increased, due to increasing of total voltage, total resistance of the series also be increased.
Resistors in parallel work just like highway lanes in parallel. -- The more lanes there are, the more traffic they can carry. -- Any number of lanes in parallel are always wider than the widest single lane, and can carry more traffic than the widest single lane can. "wide lane" = low resistance "narrow lane" = "high resistance" "traffic" = "electric current"
Usually a volt meter is placed across a component to measure the voltage drop across that component. Doing this places the volt meter resistance in parallel with that component's resistance, which will always lower the total resistance. Since the volt meter resistance is usually very large relative to the resistance of the element being measured, the total resistance does not change significantly. The formula for total resistance of two parallel elements is: Rtot = (R1*R2)/(R1+R2), as R1 (the volt meter) >> R2, Rtot ~= (R1*R2) / (R1) = R2 If a volt meter is placed into a circuit instead of around an element of that circuit, it will raise the resistance of the circuit, load the circuit with, and interrupt "normal" operation of the circuit (normal operation = how things would be without the meter in place). More importantly, the volt meter would then be measuring the voltage developped across itself (instead of an element of the circuit), which is not the point of this tool / this would be a misapplication of a volt meter.
Too high a resistance is always not a good thing in a circuit. That's what "too high" means.
-- In a series circuit, no matter where you install the ammeter, it will always read the same current. -- In a parallel circuit, the ammeter may read a different current when it's moved to a different parallel branch.
SMOKE!!! Yiii-haaaa! An ammeter is always as low a resistance as possible. That way, the current that you measure in a circuit using the meter will be the same as if the meter were not there. So putting an ammeter in parallel with a circuit means that you just short circuited the circuit you were intending to measure. Poof! There goes your ammeter!An ammeter has a very low internal resistance. So, if it is connected in parallel with a load, it will short-out that load. The resulting high current flowing through the ammeter may severely damage the meter (and possible harm the user), although most are fitted with fuses to protect them.
no series circuit is best. Actually it depends on the application, neither is always better.