Your weight on a planet is determined by its gravitational pull, which affects how much force is exerted on your body. A higher weight due to stronger gravity typically means that you will jump lower because it requires more force to overcome that gravitational pull. Conversely, on a planet with weaker gravity, you would weigh less and could jump higher since less force is needed to lift your body off the ground. Therefore, there is an inverse relationship between your weight and your jump height relative to the gravitational strength of the planet.
There are 3 possible answers to this question: Mercury, Mars, or Pluto. The simple definition of gravity is the force of attraction between two objects. Two factors determine gravitational pull: 1) the mass of the two objects and, 2) the distance between the two objects. Gravitational pull is proportional to the product of the masses of the two objects. For example, gravitational pull doubles if either of the two masses is doubled. On the other hand, gravity grows weaker if the two objects are moved farther apart. It is inversely proportional to the square of the distance between them, or if the distance is doubled between the two objects, gravity is only 1/4th as strong. So both mass and distance matter when determining gravitational pull. The big variable that the question doesn't address is how far away are you from the planet when you want to know it's "gravitational pull". Do you want to know the gravitational pull at some constant distance in space from each planet's center, or do you want to know the gravitational pull at each planet's surface. Because each planet has a different diameter, the distance from the planet's center varies from planet to planet. Since both mass and distance matter, here are the qualified answers: Pluto has, by far, the least mass of all the planets, but Pluto is now considered to be a "dwarf planet" and is no longer to be considered as a regular planet. If it were to be considered, it would have the least gravitational pull of all the planets at both it's surface and at some fixed distance in space from it's center. Mars has slightly more mass than than Mercury but also has a larger diameter. The math works out that Mars has the least gravity at it's surface. Even less than the surface gravity of Mercury because of Mars' larger diameter. Mercury has slightly less mass than Mars and a much smaller diameter. The math works out that at some constant distance in space, Mercury has the less gravitational pull than Mars because Mercury simply has less mass. Because Mercury's diameter is smaller, which puts you closer to its center, that makes its surface gravity slightly more than Mars'.
Thanks To The Moon's Gravitational Pull was created in 2003.
The gravitational force (F) between two masses (m1 and m2) is given by: F = (G * m1 * m2) /r^2. Where r is the distance between the masses, and G is the gravitational constant, 6.67300 * 10^-11. This means the larger the masses are, the more they pull toward each other. It also means that the closer they get, the stronger they pull.
The earth's gravitational pull decreases as altitude increases.
The gravitational pull between two objects will decrease as the distance between them increases. This relationship is described by Newton's law of universal gravitation, which states that the force of gravity decreases with the square of the distance between two objects.
mass and distance form an inverse relationship when related to gravity. The larger the mass(es) the greater the gravitational pull. The closer the distance, the greater the gravitational pull.
The two factors that influence the gravitational pull between two objects are the mass of the objects and the distance between them. The greater the mass of the objects, the stronger the gravitational pull, while the farther apart the objects are, the weaker the gravitational pull.
The relative strength of its gravitational pull is directly proportional to the planet's mass.
The gravitational pull between two objects is determined by their mass and the distance between them. The larger the mass of the objects and the closer they are to each other, the stronger the gravitational pull will be.
The greater the mass the stronger the gravitational pull
The two things that change the pull of gravity between two objects are their masses and the distance between them. The greater the mass of the objects, the stronger the gravitational pull, while the farther apart they are, the weaker the gravitational pull.
The mass of an object and the distance between objects are the two key factors that affect the pull of gravity. Greater mass between objects results in a stronger gravitational pull, while increasing the distance between objects weakens the gravitational force.
the grvitational pull of an object depents on its mass and density for power.
The mass of each object, and the distance between them.
The force of gravity decreases with distance according to the inverse square law. This means that the force of gravity weakens as distance increases. In other words, the farther an object is from another object, the weaker the gravitational pull between them.
directly proportional