It isn't; heavier elements can be, and are, produced by DYING stars.
The reason is the "packing fraction curve". As atomic nuclei would fuse together within the cores of normal stars, hydrogen atoms as "fuel" would fuse into helium "ash"; when the star became old, the core of the stars would heat up and become more dense as the star began to collapse into itself. The denser stellar core material would heat up and begin to fuse into heavier elements; carbon, oxygen, and heavier elements, releasing a little energy every time a new atom was formed by fusing together lighter ones - UNTIL they got to iron.
Once you get to iron, any additional fusion sucks energy OUT of the star's core, and every fusion from there on sucks even MORE energy out of the star, leading to the star's quick collapse. This is one scenario for how a "nova" might occur.
If a star EXPLODES in a supernova, then there's LOTS of energy to crash even heavy elements together into even HEAVIER elements. So all of the gold, uranium, lead, and every atom heavier than iron, was formed in a supernova explosion.
Helium.
George Lucas produced Star Wars first in 1977 and Paramount Pictures produced in 1979 Star Trek: The Motion Picture .
It's a game/reality show, like Next Food Network Star. The winner will join the other iron chefs.
During the main life cycle of a star, no elements heavier than iron can be created, and that's only in very massive stars (our sun is only massive enough to fuse hydrogen into helium). Your question is a very good one, and if you thought of it on your own, you should be proud. Every element heavier than iron is created when the star dies. Specifically, when it becomes a super-nova. When all the lighter elements have been fused, the star can't generate enough energy to resist its own gravity, so it collapses in on itself. The result is a sudden gigantic spike in pressure that creates all the heavier elements. As if it weren't cool enough that we're all made from star-stuff, a good bit of us is made from supernovae, too!
The first Star Wars Monopoly board game was first produced in 1996 by Parker Brothers and Waddington Games. The standard board game was released on October 31, 1997.
The heaviest element that can be produced prior to supernova is Iron (Fe).
Iron is an element, and is the heaviest element that may be made by fusion in a Star such as our Sun.
Iron is the heaviest element that can be produced by normal processes inside a star through nuclear fusion. Elements heavier than iron are typically formed in supernova explosions or through other stellar processes.
Iron is an element, and is the heaviest element that may be made by fusion in a Star such as our Sun.
Iron is the heaviest element formed by fusion in the core of a supergiant star prior to its supernova explosion. Elements heavier than iron are typically formed during the supernova explosion itself through nucleosynthesis processes.
The heaviest element that can be produced in the core of a massive star before it goes supernova is iron. Iron does not cause the death of a red giant, but rather the inability to continue nuclear fusion in its core, leading to its collapse and eventual explosion as a supernova.
Iron. Iron is the heaviest element that can be produced through nuclear fusion in a star, and once the core of a massive star is mostly composed of iron, it can no longer sustain fusion reactions. This triggers its collapse and ultimately leads to a supernova explosion.
Iron is the heaviest element that can be produced through nuclear fusion in stars because it has the most stable nucleus, with the lowest binding energy per nucleon. During fusion, lighter elements combine to form heavier ones, releasing energy, but once iron is formed, fusion no longer releases energy; instead, it requires energy. Therefore, in the cores of massive stars, fusion processes cease at iron, leading to the eventual collapse and supernova, where heavier elements are formed through different processes, such as neutron capture.
No, iron is not the heaviest element made in massive stars. Massive stars produce elements through nuclear fusion in their cores, creating heavier elements than iron, such as lead, gold, and uranium. Iron is often referred to as the endpoint of nuclear fusion in massive stars because the energy required to fuse iron exceeds the energy output of the reaction.
Helium.
Iron is a chemical element. It is not a compound or a mixture. An element is a substance composed of only one type of atom. In the case of iron, it consists entirely of iron atoms. Iron is one of the 118 known chemical elements and is represented by the symbol "Fe" on the periodic table. It is a fundamental building block of matter and cannot be broken down into simpler substances through chemical reactions.
Oh, dude, iron is the heaviest element that can be formed in stars because of its nuclear properties. Like, during a star's life cycle, fusion reactions occur, creating elements up to iron. Beyond that, creating heavier elements requires more energy than the star can provide. It's like the star's way of saying, "I'm done, no more heavy lifting for me."