answersLogoWhite

0


Best Answer

There's no reason for the capacitor to heat up, because it's only storing energy,

not dissipating it. When you discharge the capacitor, the energy flows out and

through the external circuit, and that's where it dissipates. If anything is going to

melt or explode, it's going to be something outside of the capacitor, through which

you try to jam the energy.

Which brings us to the 1-ohm resistor . . .

You have said that you have a "450V" capacitor. The rating marked on a capacitor

isn't the voltage across it when it's charged ... that can be whatever you make it.

The marking is the maximum that the capacitor can hold without arcing across

between the plates ... the number is called the "maximum working voltage".

You can try to charge a capacitor to whatever voltage you want, but it won't

hold any more than the number marked on it.

In order to discuss the fate of that 1-ohm resistor, we have to know what the

initial charge is on the capacitor. The only number given in the question is 450V,

and even though that's more likely the "max working voltage" of the capacitor,

let's assume for the moment that the capacitor is actually charged up to 450 volts DC.

The charging is complete, the staff retreats behind their bullet-proof plexiglass

bunker, puts on their dark glasses, and prepares to push the button that will

remotely close the circuit and discharge the capacitor through the 1-ohm

resistor. The button is pushed, and here's what the high-speed camera reveals

after the smoke clears and the fire units have departed:

As the energy drains from the capacitor, the voltage on it steadily dwindles.

How fast it dwindles depends on the resistance of the external circuit, and on

the "capacitance" of the capacitor (which tells us how much energy it takes to

charge it up to any given voltage).

What we do know about this circuit is that the capacitor is charged initially to

450 volts, and that it discharges through 1 ohm. This is enough for us to

calculate the initial current at the instant the switch is closed ...

I = (450 volts)/(1 ohm) = 450 Amps.

We can also calculate the power dissipated by the resistor at that instant:

P = I2 R = (450)2 x 1 = 202.5 kilowatts ... roughly the power that would be

demanded of a car battery if it had to start 85 cars all at the same time!

Regardless of the capacitance, and how quickly the charge on the capacitor

dwindles down from 450 volts, it's likely that this initial surge through the

1-ohm resistor causes it to self-destruct like a pellet of plutonium on the

tower at White Sands.

To answer the question:

Your capacitor is safe from harm. But if you're going to discharge it through 1 ohm,

then please wear gloves, safety glasses, and a kevlar apron.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Would a 450V parallel plate capacitor made from copper or aluminum foil melt when discharged through a circuit of about 1 ohm?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

A circuit contains a 10 pF capacitor and a 50 pF capacitor connected in parallel.What is the total capacitance of this circuit?

When capacitors are connected in parallel, the total capacitance in the circuit in which they are connected is the sum of both capacitances. Capacitors in parallel add like resistors in series, while capacitors in series add like resistors in parallel.


Why inductor use in series capacitor in parallel?

That depends on the type of circuit you are talking about. Sometimes both an inductor and capacitor are both in parallel with each other. This is called a tank circuit. Sometimes they are both used in series. These are both examples of resonant circuits. Sometimes the inductor can be in parallel with an applied voltage and the capacitor in series. This is a form of high pass filter. On the other hand, the inductor can be in series and the capacitor in parallel to for a low pass filter.


What is difference between acceptor circuit and rejector circuit?

Acceptor circuit are series circuit in which indactor and capacitor are join in series there is single path available for flow of current.while in rejector circuit inductor and capacitor are join in parallel more then one path are available for flow of current .


What is the effect on the circuit if we add a capactior in parallel with another capacitor?

Capacitors in parallel simply add up, similar to resistors in series... CTOTAL = sumI=1-N (CI) Capacitors in series work like resistors in parallel... CTOTAL = 1 / sumI=1-N (1 / CI)


Lrc parallel circuit?

LRC parallel circuit contains its component in parallel connectio. It contains inductor, resistor and a capacitor. A parallel circuit is a closed electrical circuit in which the current is divided into two or more paths and then returns via a common path to complete the circuit


Uses of gang capacitor?

Gang capacitors are commonly used in radio tuners/receivers. Radio tuners/receivers have formation of LC(inductance and capacitor). Here this circuit has one fixed inductance and capacitor parallel with gang capacitor. Normally gang capacitor used in superhetrodyne receiver.


Is capacitor a part of integrated circuit?

A small capacitor can be part of an integrated circuit.


Why is the parallel resonant circuit called an rejector circuit?

THE PARALLEL rlc CIRCUIT IS CALLED A REJECTOR CIRCUIT BECAUSE IT REJECTS DOWN THE CURRENT. THE REASON IS AT RESONANCE THE IMPEDENCE OF THE CAPACITOR BECOMES EQUAL TO THAT OF THE INDUCTOR SO NO CURRENT FLOWS. AT LOW FREQUENCY THE CAPACITIVE REACTANCE IS LOW SO ALL THE CURRENT FLOWS THROUGH THE INDUCTOR AND WHEN THE FREQUENCY IS HIGH ALL THE CURRENT WILL FLOW THROUGH THE CAPACITOR BECAUSE AT THAT POINT THE REACTANCE OF THE CAPACITOR IS LOW. SO WE OBTAIN A V-SHAPED GRAPH WITH THE PEAK OF V INDICATING THE REJECTION OF CURRENT.


When a parallel LC circuit is tuned to resonance will the current be at a maximum or a minimum?

Inside the circuit loop between the inductor and capacitor the current will be at maximum. Outside the circuit the current through the LC tank circuit will be at minimum. It depends on where you are measuring it.


What are the two kinds of electrical circuit?

There are four types of circuit: series, parallel, series-parallel, and complex.


What happens to the current in a circuit as a capacitor charges?

What happens to the current in a circuit as a capacitor charges depends on the circuit. As a capacitor charges, the voltage drop across it increases. In a typical circuit with a constant voltage source and a resistor charging the capacitor, then the current in the circuit will decrease logarithmically over time as the capacitor charges, with the end result that the current is zero, and the voltage across the capacitor is the same as the voltage source.


How does an RC work?

The resistor allows a slow charge to enter the capacitor. When this charge reaches a certain point the circuit activates and forces the capacitor to discharge. Once discharged the circuit reverses itself and starts the charge over again. The larger the cap and/or resistor the lower the frequency because it takes longer to charge the cap.