For most practical cases, there is no way to do so. For instance, the temperature has hardly any influence on such a half-life.However, in certain extreme circumstances it is possible to make an atom decay (or fuse with other atoms) - for example, with temperatures of millions of degrees, or bombarding the atoms with neutrons or some other particles.
The rate of decay (activity) of a radioactive isotope is proportional to the number of atoms of the isotope present.
The rate of decay of a radioactive element cannot be influenced by any physical or chemical change. It is a rather constant phenomenon that appears to be independent of all others. The rate of decay is given by an element's half life, which is the amount of time for approximately half of the atoms to decay.
The radioactive decay of americium 241 is by alpha disintegration; the disintegration of radioactive krypton isotopes is by beta particles emission.
ernest Rutherford _______________________________________________________________ Radioactive decay was actually discovered in 1896 by Henri Bacquerel. Ernest Rutherford discovered the formula of radioactive decay (Such as the falk-life, differences between alpha and beta decay and even how the elements become new elements after the decay), but he did not discover the radioactive decay himself.
You can't just start or stop radioactive decay. A certain type of atom (a certain isotope) will basically ALWAYS decay at a certain rate. The statement might refer to what happens at time t = 0, i.e., before the material had time to decay.
The rate cannot be changed.
The rate of decay (activity) of a radioactive isotope is proportional to the number of atoms of the isotope present.
The rate of decay (activity) of a radioactive isotope is proportional to the number of atoms of the isotope present.
The rate of radioactive decay can change over time due to factors such as the type of radioactive material, environmental conditions, and any external influences. The decay rate is generally constant for a specific radioactive isotope, but it can be affected by changes in temperature, pressure, or chemical reactions. Additionally, the decay rate can also be influenced by the presence of other radioactive materials or particles that may interact with the original material.
no
For all practical purposes, No. However, there is a very small effect on some elements due to pressure (E.g. http://www.sciencemag.org/cgi/content/abstract/181/4105/1164), there is a small effect upon Beta Decay due to magnetic field strength, and there is an effect due to ionization.
Radioactive decay falls under chemistry, because the chemical properties of the substance are changed during radioactive decay.
This the decay (disintegration) rate.
fossils
Pressure does not have a significant effect on the rate of radioactive decay, as it is mainly influenced by the instability of the nucleus of the atom. The decay process is determined by the nuclear forces within the atom, which are not significantly affected by external pressure changes.
It tells what fraction of a radioactive sample remains after a certain length of time.
A radioactive element's rate of decay is characterized by its half-life, which is the time required for half of the radioactive atoms in a sample to decay into a more stable form. This process occurs at a constant rate, unique to each isotope, and is unaffected by external conditions like temperature or pressure. The decay follows an exponential decay model, meaning that as time progresses, the quantity of the radioactive substance decreases rapidly at first and then more slowly.