I seem to recall that [ P V = K T ]. Let's see whether that helps us here.
[ P V / T ] is a constant.
Initial [ P V / T ] = [ 1 x 25 / 288 ]
Final [ P V / T ] = [ 1 x V / 303 ] = [ 1 x 25 / 288 ]
V/303 = 25/288
V = (303 x 25)/(288) = 26.302 liters
In a closed system with constant pressure and no input or output of heat, the gas temperature will remain constant. In that same system, if the pressure is increased, then the gas temperature will also increase. If pressure is decreased, then the gas temperature will decrease.
When air is increased in volume, the pressure decreases while the temperature remains constant. This relationship is described by Boyle's Law, which states that the pressure of a gas is inversely proportional to its volume when the temperature is held constant. As the volume increases, the air molecules have more space to move around, leading to a lower pressure.
If temperature increases while volume remains constant, according to Charles's Law, pressure will increase proportionally. This is because the increased temperature will cause the gas molecules to move faster and exert more force on the walls of the container, resulting in an increase in pressure.
If a gas is compressed from 4 L to 1 L while maintaining a constant temperature, the pressure of the gas will increase according to Boyle's Law, which states that pressure and volume are inversely related at constant temperature. Therefore, as the volume decreases, the pressure rises to keep the temperature constant. The temperature itself does not change in this scenario; it remains constant throughout the process.
since PV=nRT and we assume that the number of moles and temperature remains constant, we can assume that PV=R as R the gas constant will not change, if pressure is increased, then volume must decrease to counteract the change in pressure
When the volume of a gas is increased, the pressure of the gas decreases while the temperature remains constant, assuming the gas is behaving ideally. This relationship is described by Boyle's Law, which states that pressure is inversely proportional to volume at constant temperature.
In a closed system with constant pressure and no input or output of heat, the gas temperature will remain constant. In that same system, if the pressure is increased, then the gas temperature will also increase. If pressure is decreased, then the gas temperature will decrease.
If the temperature of a system is increased, but the volume remains constant, the pressure will increase. If Pressure is increased, then temperature will increase. They are directly proportional, as shown by the combined gas law equation, (V1P1)/T1=V2P2/T2
If temperature remains constant and the volume of gas increases, the pressure will decrease. This is described by Boyle's Law, which states that pressure and volume are inversely proportional when temperature is constant.
The pressure will increase if the volume remains the same.
When air is increased in volume, the pressure decreases while the temperature remains constant. This relationship is described by Boyle's Law, which states that the pressure of a gas is inversely proportional to its volume when the temperature is held constant. As the volume increases, the air molecules have more space to move around, leading to a lower pressure.
If temperature increases while volume remains constant, according to Charles's Law, pressure will increase proportionally. This is because the increased temperature will cause the gas molecules to move faster and exert more force on the walls of the container, resulting in an increase in pressure.
No, it is not possible for the balloon to naturally expand four times its initial volume while the temperature remains constant. According to Boyle's Law, at constant temperature, the pressure and volume of a gas are inversely proportional. Since the atmospheric pressure remains constant, the balloon's pressure of 200.0kPa would need to increase to expand, which cannot happen at constant temperature.
No, pressure is dependent on temperature. As temperature increases, the pressure of a gas also increases, assuming volume remains constant (Boyle's Law). If volume is not constant, then pressure and temperature are directly proportional (Charles's Law).
Using the ideal gas law equation, we can calculate the new volume of the gas. At STP, the pressure is 1 atm, which means 50 atm is 50 times greater. So the new volume would be 1.55L / 50 = 0.031L, when the pressure is increased to 50 atm.
remains constant
remains constant