ABSOLUTELY NOT
Change the coefficients on reactant or productt units.
No - they are usually balanced by changing the numbers before the molecules.
In a balanced chemical equation, the number of atoms of each element on both the reactant and product sides are equal, ensuring the law of conservation of mass is satisfied. This balance signifies that no atoms are created or destroyed during a chemical reaction, but instead rearranged.
Both balanced and unbalanced chemical equations represent the chemical reactions that take place between reactants to form products. The key difference is that balanced equations have an equal number of atoms of each element on both sides, while unbalanced equations do not.
The subscripts determine what the chemicals are, you have to change the amount of the reactants/products rather than change what the reactants/products actually are eg O2 is oxygen gas, if you wanted 4 of them to balance it it would have to be 2 O2 otherwise it wouldn't be oxygen gas any more.
No, but both describe the same chemical reaction.
No - they are usually balanced by changing the numbers before the molecules.
False. Chemical equations are balanced by changing the coefficients in front of the chemical formulas, not the subscripts within the formulas. The number of atoms of each element must be equal on both sides of the equation to ensure that mass is conserved.
Subscripts state how many atoms and Coefficients state how many molecules there are. So when balancing an equation you always adjust the coefficients. When this equation is balanced, what is the coefficient for Ni(NOËÄ)ËÄ? 4
The number of molecules
A balanced equation is when the amount of molecules reacting are equal to the amount of molecules being produced. Chemical equations must be balanced because no energy/mass is ever lost when a reaction takes place. This is because atoms are simply arranged.
Yes, chemical equations must be balanced due to the law of conservation of matter/mass.
True. Subscripts represent the number of atoms of each element in a compound and changing them would change the chemical formula, possibly making it unbalanced in the equation. By adjusting the coefficients of the compounds involved in the reaction, the equation can be balanced without modifying the subscripts.
In a balanced chemical equation, the number of atoms of each element on both the reactant and product sides are equal, ensuring the law of conservation of mass is satisfied. This balance signifies that no atoms are created or destroyed during a chemical reaction, but instead rearranged.
Chemical reactions can have many possible balanced equations because there are various ways in which the reactant molecules can combine to form different products. Each combination may result in a different balanced equation depending on the stoichiometry of the reaction. Additionally, different conditions, such as temperature and pressure, can also affect the outcome of the reaction, resulting in different balanced equations.
Chemical equations are representative for chemical reactions.
Both balanced and unbalanced chemical equations represent the chemical reactions that take place between reactants to form products. The key difference is that balanced equations have an equal number of atoms of each element on both sides, while unbalanced equations do not.
Balanced chemical equations demonstrate the conservation of mass and atoms in a chemical reaction. They show the ratio of reactants and products involved in a reaction and help predict the outcomes of chemical reactions.