No, a 1p orbital does not exist. The p orbitals start at the n=2 energy level. Within the p subshell, there are three separate p orbitals (px, py, pz).
The orbital orientations that are possible in each sub level are:S-1p-3d-5f-7
There can be a maximum of 14 electrons in any "f" orbital. However, the 3f orbital does not exist. f orbitals are only found in quantum energy level 4 and above.
3f
the lowest value of n that allows g orbitals to exist is 5
There are seven spatial orientations for an f sub-level in an atom - one spherically symmetrical orbital, three dumbbell-shaped orbital pairs, and one more complex orbital shape.
1p is not a valid orbital designation according to the rules for assigning quantum numbers to atomic orbitals. Orbitals are defined using the principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m), and spin quantum number (s). The orbital with n=1 and l=1 is designated as 2p, not 1p.
The orbital orientations that are possible in each sub level are:S-1p-3d-5f-7
Molecular orbitals: dihelium has two electrons in the bonding orbital and two in the antibonding orbital. That why it does not exists.
29 Ways: 20(1p) 18(1p),1(2p) 16(1p),2(2p) 14(1p),3(2p) 12(1p),4(2p) 10(1p),5(2p) 8(1p),6(2p) 6(1p),7(2p) 4(1p),8(2p) 2(1p),9(2p) 10(2p) 4(5p) 3(5p),2(2p),1(1p) 3(5p),1(2p),3(1p) 3(5p),5(1p) 2(5p),5(2p) 2(5p),4(2p),2(1p) 2(5p),3(2p),4(1p) 2(5p),2(2p),6(1p) 2(5p),1(2p),8(1p) 2(5p),10(1p) 1(5p),7(2p),1(1p) 1(5p),6(2p),3(1p) 1(5p),5(2p),5(1p) 1(5p),4(2p),7(1p) 1(5p),3(2p),9(1p) 1(5p),2(2p),11(1p) 1(5p),1(2p),13(1p) 1(5p),15(1p)
It can be done in 162 ways, viz: 1 × 20p, 1 × 10p, 1 × 5p 1 × 20p, 1 × 10p, 2 × 2p, 1 × 1p 1 × 20p, 1 × 10p, 1 × 2p, 3 × 1p 1 × 20p, 1 × 10p, 5 × 1p 1 × 20p, 3 × 5p 1 × 20p, 2 × 5p, 2 × 2p, 1 × 1p 1 × 20p, 2 × 5p, 1 × 2p, 3 × 1p 1 × 20p, 2 × 5p, 5 × 1p 1 × 20p, 1 × 5p, 5 × 2p 1 × 20p, 1 × 5p, 4 × 2p, 2 × 1p 1 × 20p, 1 × 5p, 3 × 2p, 4 × 1p 1 × 20p, 1 × 5p, 2 × 2p, 6 × 1p 1 × 20p, 1 × 5p, 1 × 2p, 8 × 1p 1 × 20p, 1 × 5p, 10 × 1p 1 × 20p, 7 × 2p, 1 × 1p 1 × 20p, 6 × 2p, 3 × 1p 1 × 20p, 5 × 2p, 5 × 1p 1 × 20p, 4 × 2p, 7 × 1p 1 × 20p, 3 × 2p, 9 × 1p 1 × 20p, 2 × 2p, 11 × 1p 1 × 20p, 1 × 2p, 13 × 1p 1 × 20p, 15 × 1p 3 × 10p, 1 × 5p 3 × 10p, 2 × 2p, 1 × 1p 3 × 10p, 1 × 2p, 3 × 1p 3 × 10p, 5 × 1p 2 × 10p, 3 × 5p 2 × 10p, 2 × 5p, 2 × 2p, 1 × 1p 2 × 10p, 2 × 5p, 1 × 2p, 3 × 1p 2 × 10p, 2 × 5p, 5 × 1p 2 × 10p, 1 × 5p, 5 × 2p 2 × 10p, 1 × 5p, 4 × 2p, 2 × 1p 2 × 10p, 1 × 5p, 3 × 2p, 4 × 1p 2 × 10p, 1 × 5p, 2 × 2p, 6 × 1p 2 × 10p, 1 × 5p, 1 × 2p, 8 × 1p 2 × 10p, 1 × 5p, 10 × 1p 2 × 10p, 7 × 2p, 1 × 1p 2 × 10p, 6 × 2p, 3 × 1p 2 × 10p, 5 × 2p, 5 × 1p 2 × 10p, 4 × 2p, 7 × 1p 2 × 10p, 3 × 2p, 9 × 1p 2 × 10p, 2 × 2p, 11 × 1p 2 × 10p, 1 × 2p, 13 × 1p 2 × 10p, 15 × 1p 1 × 10p, 5 × 5p 1 × 10p, 4 × 5p, 2 × 2p, 1 × 1p 1 × 10p, 4 × 5p, 1 × 2p, 3 × 1p 1 × 10p, 4 × 5p, 5 × 1p 1 × 10p, 3 × 5p, 5 × 2p 1 × 10p, 3 × 5p, 4 × 2p, 2 × 1p 1 × 10p, 3 × 5p, 3 × 2p, 4 × 1p 1 × 10p, 3 × 5p, 2 × 2p, 6 × 1p 1 × 10p, 3 × 5p, 1 × 2p, 8 × 1p 1 × 10p, 3 × 5p, 10 × 1p 1 × 10p, 2 × 5p, 7 × 2p, 1 × 1p 1 × 10p, 2 × 5p, 6 × 2p, 3 × 1p 1 × 10p, 2 × 5p, 5 × 2p, 5 × 1p 1 × 10p, 2 × 5p, 4 × 2p, 7 × 1p 1 × 10p, 2 × 5p, 3 × 2p, 9 × 1p 1 × 10p, 2 × 5p, 2 × 2p, 11 × 1p 1 × 10p, 2 × 5p, 1 × 2p, 13 × 1p 1 × 10p, 2 × 5p, 15 × 1p 1 × 10p, 1 × 5p, 10 × 2p 1 × 10p, 1 × 5p, 9 × 2p, 2 × 1p 1 × 10p, 1 × 5p, 8 × 2p, 4 × 1p 1 × 10p, 1 × 5p, 7 × 2p, 6 × 1p 1 × 10p, 1 × 5p, 6 × 2p, 8 × 1p 1 × 10p, 1 × 5p, 5 × 2p, 10 × 1p 1 × 10p, 1 × 5p, 4 × 2p, 12 × 1p 1 × 10p, 1 × 5p, 3 × 2p, 14 × 1p 1 × 10p, 1 × 5p, 2 × 2p, 16 × 1p 1 × 10p, 1 × 5p, 1 × 2p, 18 × 1p 1 × 10p, 1 × 5p, 20 × 1p 1 × 10p, 12 × 2p, 1 × 1p 1 × 10p, 11 × 2p, 3 × 1p 1 × 10p, 10 × 2p, 5 × 1p 1 × 10p, 9 × 2p, 7 × 1p 1 × 10p, 8 × 2p, 9 × 1p 1 × 10p, 7 × 2p, 11 × 1p 1 × 10p, 6 × 2p, 13 × 1p 1 × 10p, 5 × 2p, 15 × 1p 1 × 10p, 4 × 2p, 17 × 1p 1 × 10p, 3 × 2p, 19 × 1p 1 × 10p, 2 × 2p, 21 × 1p 1 × 10p, 1 × 2p, 23 × 1p 1 × 10p, 25 × 1p 7 × 5p 6 × 5p, 2 × 2p, 1 × 1p 6 × 5p, 1 × 2p, 3 × 1p 6 × 5p, 5 × 1p 5 × 5p, 5 × 2p 5 × 5p, 4 × 2p, 2 × 1p 5 × 5p, 3 × 2p, 4 × 1p 5 × 5p, 2 × 2p, 6 × 1p 5 × 5p, 1 × 2p, 8 × 1p 5 × 5p, 10 × 1p 4 × 5p, 7 × 2p, 1 × 1p 4 × 5p, 6 × 2p, 3 × 1p 4 × 5p, 5 × 2p, 5 × 1p 4 × 5p, 4 × 2p, 7 × 1p 4 × 5p, 3 × 2p, 9 × 1p 4 × 5p, 2 × 2p, 11 × 1p 4 × 5p, 1 × 2p, 13 × 1p 4 × 5p, 15 × 1p 3 × 5p, 10 × 2p 3 × 5p, 9 × 2p, 2 × 1p 3 × 5p, 8 × 2p, 4 × 1p 3 × 5p, 7 × 2p, 6 × 1p 3 × 5p, 6 × 2p, 8 × 1p 3 × 5p, 5 × 2p, 10 × 1p 3 × 5p, 4 × 2p, 12 × 1p 3 × 5p, 3 × 2p, 14 × 1p 3 × 5p, 2 × 2p, 16 × 1p 3 × 5p, 1 × 2p, 18 × 1p 3 × 5p, 20 × 1p 2 × 5p, 12 × 2p, 1 × 1p 2 × 5p, 11 × 2p, 3 × 1p 2 × 5p, 10 × 2p, 5 × 1p 2 × 5p, 9 × 2p, 7 × 1p 2 × 5p, 8 × 2p, 9 × 1p 2 × 5p, 7 × 2p, 11 × 1p 2 × 5p, 6 × 2p, 13 × 1p 2 × 5p, 5 × 2p, 15 × 1p 2 × 5p, 4 × 2p, 17 × 1p 2 × 5p, 3 × 2p, 19 × 1p 2 × 5p, 2 × 2p, 21 × 1p 2 × 5p, 1 × 2p, 23 × 1p 2 × 5p, 25 × 1p 1 × 5p, 15 × 2p 1 × 5p, 14 × 2p, 2 × 1p 1 × 5p, 13 × 2p, 4 × 1p 1 × 5p, 12 × 2p, 6 × 1p 1 × 5p, 11 × 2p, 8 × 1p 1 × 5p, 10 × 2p, 10 × 1p 1 × 5p, 9 × 2p, 12 × 1p 1 × 5p, 8 × 2p, 14 × 1p 1 × 5p, 7 × 2p, 16 × 1p 1 × 5p, 6 × 2p, 18 × 1p 1 × 5p, 5 × 2p, 20 × 1p 1 × 5p, 4 × 2p, 22 × 1p 1 × 5p, 3 × 2p, 24 × 1p 1 × 5p, 2 × 2p, 26 × 1p 1 × 5p, 1 × 2p, 28 × 1p 1 × 5p, 30 × 1p 17 × 2p, 1 × 1p 16 × 2p, 3 × 1p 15 × 2p, 5 × 1p 14 × 2p, 7 × 1p 13 × 2p, 9 × 1p 12 × 2p, 11 × 1p 11 × 2p, 13 × 1p 10 × 2p, 15 × 1p 9 × 2p, 17 × 1p 8 × 2p, 19 × 1p 7 × 2p, 21 × 1p 6 × 2p, 23 × 1p 5 × 2p, 25 × 1p 4 × 2p, 27 × 1p 3 × 2p, 29 × 1p 2 × 2p, 31 × 1p 1 × 2p, 33 × 1p 35 × 1p
There is no 1p shell.
I am sure you can. It will be worth 1p
There can be a maximum of 14 electrons in any "f" orbital. However, the 3f orbital does not exist. f orbitals are only found in quantum energy level 4 and above.
"1p" is the abbreviation for 1 British penny. 100 pence = £1, so 1p is not worth much.
3f
no because f orbitals are not energetically available until the n=4 quantum state
In the United Kingdom the first 1p coins were in 1971