answersLogoWhite

0

No, a 1p orbital does not exist. The p orbitals start at the n=2 energy level. Within the p subshell, there are three separate p orbitals (px, py, pz).

User Avatar

AnswerBot

1y ago

What else can I help you with?

Related Questions

Is 1p a real or impossible orbital?

1p is not a valid orbital designation according to the rules for assigning quantum numbers to atomic orbitals. Orbitals are defined using the principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m), and spin quantum number (s). The orbital with n=1 and l=1 is designated as 2p, not 1p.


How many orientations can s orbital have about the nucleus?

The orbital orientations that are possible in each sub level are:S-1p-3d-5f-7


Why dihelium does not exist?

Molecular orbitals: dihelium has two electrons in the bonding orbital and two in the antibonding orbital. That why it does not exists.


How many ways to make 20p usin 1p 2p and 5p coins?

29 Ways: 20(1p) 18(1p),1(2p) 16(1p),2(2p) 14(1p),3(2p) 12(1p),4(2p) 10(1p),5(2p) 8(1p),6(2p) 6(1p),7(2p) 4(1p),8(2p) 2(1p),9(2p) 10(2p) 4(5p) 3(5p),2(2p),1(1p) 3(5p),1(2p),3(1p) 3(5p),5(1p) 2(5p),5(2p) 2(5p),4(2p),2(1p) 2(5p),3(2p),4(1p) 2(5p),2(2p),6(1p) 2(5p),1(2p),8(1p) 2(5p),10(1p) 1(5p),7(2p),1(1p) 1(5p),6(2p),3(1p) 1(5p),5(2p),5(1p) 1(5p),4(2p),7(1p) 1(5p),3(2p),9(1p) 1(5p),2(2p),11(1p) 1(5p),1(2p),13(1p) 1(5p),15(1p)


How many ways to make 35p using 5p 10p 2p 1p and 20p coins?

It can be done in 162 ways, viz: 1 × 20p, 1 × 10p, 1 × 5p 1 × 20p, 1 × 10p, 2 × 2p, 1 × 1p 1 × 20p, 1 × 10p, 1 × 2p, 3 × 1p 1 × 20p, 1 × 10p, 5 × 1p 1 × 20p, 3 × 5p 1 × 20p, 2 × 5p, 2 × 2p, 1 × 1p 1 × 20p, 2 × 5p, 1 × 2p, 3 × 1p 1 × 20p, 2 × 5p, 5 × 1p 1 × 20p, 1 × 5p, 5 × 2p 1 × 20p, 1 × 5p, 4 × 2p, 2 × 1p 1 × 20p, 1 × 5p, 3 × 2p, 4 × 1p 1 × 20p, 1 × 5p, 2 × 2p, 6 × 1p 1 × 20p, 1 × 5p, 1 × 2p, 8 × 1p 1 × 20p, 1 × 5p, 10 × 1p 1 × 20p, 7 × 2p, 1 × 1p 1 × 20p, 6 × 2p, 3 × 1p 1 × 20p, 5 × 2p, 5 × 1p 1 × 20p, 4 × 2p, 7 × 1p 1 × 20p, 3 × 2p, 9 × 1p 1 × 20p, 2 × 2p, 11 × 1p 1 × 20p, 1 × 2p, 13 × 1p 1 × 20p, 15 × 1p 3 × 10p, 1 × 5p 3 × 10p, 2 × 2p, 1 × 1p 3 × 10p, 1 × 2p, 3 × 1p 3 × 10p, 5 × 1p 2 × 10p, 3 × 5p 2 × 10p, 2 × 5p, 2 × 2p, 1 × 1p 2 × 10p, 2 × 5p, 1 × 2p, 3 × 1p 2 × 10p, 2 × 5p, 5 × 1p 2 × 10p, 1 × 5p, 5 × 2p 2 × 10p, 1 × 5p, 4 × 2p, 2 × 1p 2 × 10p, 1 × 5p, 3 × 2p, 4 × 1p 2 × 10p, 1 × 5p, 2 × 2p, 6 × 1p 2 × 10p, 1 × 5p, 1 × 2p, 8 × 1p 2 × 10p, 1 × 5p, 10 × 1p 2 × 10p, 7 × 2p, 1 × 1p 2 × 10p, 6 × 2p, 3 × 1p 2 × 10p, 5 × 2p, 5 × 1p 2 × 10p, 4 × 2p, 7 × 1p 2 × 10p, 3 × 2p, 9 × 1p 2 × 10p, 2 × 2p, 11 × 1p 2 × 10p, 1 × 2p, 13 × 1p 2 × 10p, 15 × 1p 1 × 10p, 5 × 5p 1 × 10p, 4 × 5p, 2 × 2p, 1 × 1p 1 × 10p, 4 × 5p, 1 × 2p, 3 × 1p 1 × 10p, 4 × 5p, 5 × 1p 1 × 10p, 3 × 5p, 5 × 2p 1 × 10p, 3 × 5p, 4 × 2p, 2 × 1p 1 × 10p, 3 × 5p, 3 × 2p, 4 × 1p 1 × 10p, 3 × 5p, 2 × 2p, 6 × 1p 1 × 10p, 3 × 5p, 1 × 2p, 8 × 1p 1 × 10p, 3 × 5p, 10 × 1p 1 × 10p, 2 × 5p, 7 × 2p, 1 × 1p 1 × 10p, 2 × 5p, 6 × 2p, 3 × 1p 1 × 10p, 2 × 5p, 5 × 2p, 5 × 1p 1 × 10p, 2 × 5p, 4 × 2p, 7 × 1p 1 × 10p, 2 × 5p, 3 × 2p, 9 × 1p 1 × 10p, 2 × 5p, 2 × 2p, 11 × 1p 1 × 10p, 2 × 5p, 1 × 2p, 13 × 1p 1 × 10p, 2 × 5p, 15 × 1p 1 × 10p, 1 × 5p, 10 × 2p 1 × 10p, 1 × 5p, 9 × 2p, 2 × 1p 1 × 10p, 1 × 5p, 8 × 2p, 4 × 1p 1 × 10p, 1 × 5p, 7 × 2p, 6 × 1p 1 × 10p, 1 × 5p, 6 × 2p, 8 × 1p 1 × 10p, 1 × 5p, 5 × 2p, 10 × 1p 1 × 10p, 1 × 5p, 4 × 2p, 12 × 1p 1 × 10p, 1 × 5p, 3 × 2p, 14 × 1p 1 × 10p, 1 × 5p, 2 × 2p, 16 × 1p 1 × 10p, 1 × 5p, 1 × 2p, 18 × 1p 1 × 10p, 1 × 5p, 20 × 1p 1 × 10p, 12 × 2p, 1 × 1p 1 × 10p, 11 × 2p, 3 × 1p 1 × 10p, 10 × 2p, 5 × 1p 1 × 10p, 9 × 2p, 7 × 1p 1 × 10p, 8 × 2p, 9 × 1p 1 × 10p, 7 × 2p, 11 × 1p 1 × 10p, 6 × 2p, 13 × 1p 1 × 10p, 5 × 2p, 15 × 1p 1 × 10p, 4 × 2p, 17 × 1p 1 × 10p, 3 × 2p, 19 × 1p 1 × 10p, 2 × 2p, 21 × 1p 1 × 10p, 1 × 2p, 23 × 1p 1 × 10p, 25 × 1p 7 × 5p 6 × 5p, 2 × 2p, 1 × 1p 6 × 5p, 1 × 2p, 3 × 1p 6 × 5p, 5 × 1p 5 × 5p, 5 × 2p 5 × 5p, 4 × 2p, 2 × 1p 5 × 5p, 3 × 2p, 4 × 1p 5 × 5p, 2 × 2p, 6 × 1p 5 × 5p, 1 × 2p, 8 × 1p 5 × 5p, 10 × 1p 4 × 5p, 7 × 2p, 1 × 1p 4 × 5p, 6 × 2p, 3 × 1p 4 × 5p, 5 × 2p, 5 × 1p 4 × 5p, 4 × 2p, 7 × 1p 4 × 5p, 3 × 2p, 9 × 1p 4 × 5p, 2 × 2p, 11 × 1p 4 × 5p, 1 × 2p, 13 × 1p 4 × 5p, 15 × 1p 3 × 5p, 10 × 2p 3 × 5p, 9 × 2p, 2 × 1p 3 × 5p, 8 × 2p, 4 × 1p 3 × 5p, 7 × 2p, 6 × 1p 3 × 5p, 6 × 2p, 8 × 1p 3 × 5p, 5 × 2p, 10 × 1p 3 × 5p, 4 × 2p, 12 × 1p 3 × 5p, 3 × 2p, 14 × 1p 3 × 5p, 2 × 2p, 16 × 1p 3 × 5p, 1 × 2p, 18 × 1p 3 × 5p, 20 × 1p 2 × 5p, 12 × 2p, 1 × 1p 2 × 5p, 11 × 2p, 3 × 1p 2 × 5p, 10 × 2p, 5 × 1p 2 × 5p, 9 × 2p, 7 × 1p 2 × 5p, 8 × 2p, 9 × 1p 2 × 5p, 7 × 2p, 11 × 1p 2 × 5p, 6 × 2p, 13 × 1p 2 × 5p, 5 × 2p, 15 × 1p 2 × 5p, 4 × 2p, 17 × 1p 2 × 5p, 3 × 2p, 19 × 1p 2 × 5p, 2 × 2p, 21 × 1p 2 × 5p, 1 × 2p, 23 × 1p 2 × 5p, 25 × 1p 1 × 5p, 15 × 2p 1 × 5p, 14 × 2p, 2 × 1p 1 × 5p, 13 × 2p, 4 × 1p 1 × 5p, 12 × 2p, 6 × 1p 1 × 5p, 11 × 2p, 8 × 1p 1 × 5p, 10 × 2p, 10 × 1p 1 × 5p, 9 × 2p, 12 × 1p 1 × 5p, 8 × 2p, 14 × 1p 1 × 5p, 7 × 2p, 16 × 1p 1 × 5p, 6 × 2p, 18 × 1p 1 × 5p, 5 × 2p, 20 × 1p 1 × 5p, 4 × 2p, 22 × 1p 1 × 5p, 3 × 2p, 24 × 1p 1 × 5p, 2 × 2p, 26 × 1p 1 × 5p, 1 × 2p, 28 × 1p 1 × 5p, 30 × 1p 17 × 2p, 1 × 1p 16 × 2p, 3 × 1p 15 × 2p, 5 × 1p 14 × 2p, 7 × 1p 13 × 2p, 9 × 1p 12 × 2p, 11 × 1p 11 × 2p, 13 × 1p 10 × 2p, 15 × 1p 9 × 2p, 17 × 1p 8 × 2p, 19 × 1p 7 × 2p, 21 × 1p 6 × 2p, 23 × 1p 5 × 2p, 25 × 1p 4 × 2p, 27 × 1p 3 × 2p, 29 × 1p 2 × 2p, 31 × 1p 1 × 2p, 33 × 1p 35 × 1p


What base metal is on or in a 1p shell?

There is no 1p shell.


Can you buy a car for 1p?

I am sure you can. It will be worth 1p


How much electrons can be in a 3f orbital?

There can be a maximum of 14 electrons in any "f" orbital. However, the 3f orbital does not exist. f orbitals are only found in quantum energy level 4 and above.


How much is 1p?

"1p" is the abbreviation for 1 British penny. 100 pence = £1, so 1p is not worth much.


What is An orbital that could never exist according to the quantum description of the atom is?

3f


Can 3f orbital be exist?

no because f orbitals are not energetically available until the n=4 quantum state


When was 1p made?

In the United Kingdom the first 1p coins were in 1971