possibly
As a white dwarf loses energy and cools down, it eventually transitions into a black dwarf. A black dwarf is a hypothetical stellar remnant that has cooled to the point where it no longer emits heat or light. It is smaller and denser than a white dwarf.
A white dwarf is much larger than a neutron star.
Yes, a mid-sized star can eventually become a white dwarf or a black dwarf. After exhausting its nuclear fuel, the star sheds its outer layers to form a planetary nebula, leaving behind a white dwarf. Over trillions of years, a white dwarf may cool and fade into a black dwarf, although this process would take longer than the current age of the universe.
A white dwarf could be smaller or bigger than the moon since it's size varies depending on the mass of the white dwarf. Since the mass of the moon is 7.347 x 1022 kg and the mass of Pluto is 1.31×1022 kg the size of a white dwarf is also smaller or bigger than Pluto depending on it's mass.
A white dwarf is much denser than the Sun. White dwarfs have a typical density around 1 million times greater than the density of the Sun, resulting in a mass similar to the Sun's but packed into a much smaller volume.
Guinea Pigs live longer than Dwarf Hamsters.
As a white dwarf loses energy and cools down, it eventually transitions into a black dwarf. A black dwarf is a hypothetical stellar remnant that has cooled to the point where it no longer emits heat or light. It is smaller and denser than a white dwarf.
Far more than that. It is estimated to take hundreds of trillions of years for a white dwarf to cool to a black dwarf.
Not necessarily. A white dwarf is simply the remains of a low to medium mass star that has died. A red dwarf is a low mass star. Since red dwarfs last longer than medium mass stars, one could easily be older than a white dwarf.
A black dwarf is a theoretical end-stage of a white dwarf star in the far future, after it has cooled down and no longer emits light. White dwarfs are hot, dense remnants of low to medium mass stars at the end of their evolution.
Billions of years - longer than the life of our universe has passed from now (21st century).
A white dwarf is the last stage of 97% of star evolution. A white dwarf will eventually cool down, and become a "black dwarf". Black dwarves are not expected to exist yet; to cool down to that level, it would take longer than the current age of the Universe.
No, the surface temperature of Betelgeuse is colder than the temperature of a white dwarf, the white dwarf is the hot core of a dead star. Also, red stars are always colder than white stars.
A white dwarf is much larger than a neutron star.
YES. A typical white dwarf star is only a bit bigger than the Earth.
Yes. The white dwarf would be a bit bigger than the Earth.
Yes, a mid-sized star can eventually become a white dwarf or a black dwarf. After exhausting its nuclear fuel, the star sheds its outer layers to form a planetary nebula, leaving behind a white dwarf. Over trillions of years, a white dwarf may cool and fade into a black dwarf, although this process would take longer than the current age of the universe.