No, the chicken hasn't been flamed yet, obvi.
The ideal gas law is useful as an approximation for real gases in many situations where the gas behaves similarly to an ideal gas. It helps chemists and physicists predict the behavior of gases under different conditions without having to account for all the complexities of real gas behavior. While gases may not perfectly follow the ideal gas law, it provides a good starting point for understanding gas behavior.
There are ideal gases..
An ideal gas
Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.
Butane gas is not an ideal gas because it exhibits some deviation from the ideal gas law at high pressures and low temperatures. This is due to the intermolecular forces present in butane molecules that influence their behavior. Additionally, butane gas can liquefy at relatively low temperatures, further deviating from ideal gas behavior.
The ideal gas law is most applicable for a gas to exist under conditions of low pressure and high temperature.
The ideal gas exist only in theory.
YES!
Hydrogen gas behaves closely as an ideal gas under certain conditions, such as low pressure and high temperature. However, at very high pressures or low temperatures, hydrogen gas may deviate from ideal behavior due to intermolecular interactions.
The ideal gas law is useful as an approximation for real gases in many situations where the gas behaves similarly to an ideal gas. It helps chemists and physicists predict the behavior of gases under different conditions without having to account for all the complexities of real gas behavior. While gases may not perfectly follow the ideal gas law, it provides a good starting point for understanding gas behavior.
There are ideal gases..
An ideal gas
the ideal gas constant D:
Krypton is not an ideal gas because it deviates from the ideal gas law at high pressures and low temperatures due to its intermolecular interactions. At standard conditions, krypton behaves closely to an ideal gas, but as conditions vary, its non-ideal characteristics become more pronounced.
Real gases approach ideal behavior at high temperature and low pressure. In this Condition gases occupy a large volume and molecules are far apart so volume of gas molecules are negligible and intermolecular force of attraction(responsible for non ideal behavior) become low. So gases approach ideal behavior.
No, CO2 is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.
No, oxygen is not considered an ideal gas because it does not perfectly follow the ideal gas law at all temperatures and pressures.