answersLogoWhite

0

Kinetic and Potential Energy

History

A roller coaster train going down hill represents merely a complex case as a body is descending an inclined plane. Newton's first two laws relate force and acceleration, which are key concepts in roller coaster physics. At amusement parks, Newton's laws can be applied to every ride. These rides range from 'The Swings' to The 'Hammer'. Newton was also one of the developers of calculus which is essential to analyzing falling bodies constrained on more complex paths than inclined planes. A roller coaster rider is in an gravitational field except with the Principle of Equivalence.

Potential Energy

Potential energy is the same as stored energy. The "stored" energy is held within the gravitational field. When you lift a heavy object you exert energy which later will become kinetic energy when the object is dropped. A lift motor from a roller coaster exerts potential energy when lifting the train to the top of the hill. The higher the train is lifted by the motor the more potential energy is produced; thus, forming a greater amount if kinetic energy when the train is dropped. At the top of the hills the train has a huge amount of potential energy, but it has very little kinetic energy.

Kinetic Energy

The word "kinetic" is derived from the Greek word meaning to move, and the word "energy" is the ability to move. Thus, "kinetic energy" is the energy of motion --it's ability to do work. The faster the body moves the more kinetic energy is produced. The greater the mass and speed of an object the more kinetic energy there will be. As the train accelerates down the hill the potential energy is converted into kinetic energy. There is very little potential energy at the bottom of the hill, but there is a great amount of kinetic energy.

Theory

When the train is at the top and bottom of the hill there is not any potential or kinetic energy being used at all. The train at the bottom of the first drop should have enough energy to get back up the height of the lift hill. The "Act of Faith" in riding these amazing rides which seems more of a phenomena that is only a theory. In practices, the train never could make it back up the hill because of dissipative forces. Friction and air resistance, and even possible mid-course breaks, are dissipative forces causing the theory to be changed but not destroyed. These forces make it impossible for the train to have enough energy to make it back up the lift hill's height. In the absence of the dissipative forces the potential and kinetic energies(mechanical energy) will remain the same. Since the mechanical energy is destroyed by the forces, the first hill is always the highest

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Natural Sciences

An example of kinetic energy continuously being changed to potential energy and back again might be?

A pendulum is a classic example where kinetic energy is continually converted to potential energy and vice versa. As the pendulum swings, it reaches its highest point where it has maximum potential energy and minimum kinetic energy, and at the lowest point of its swing, the opposite is true with maximum kinetic energy and minimum potential energy.


You jump down and the trampoline streches potential or kinetic energy?

When you jump down onto the trampoline, the initial potential energy from your height is converted into kinetic energy as you descend. When you bounce back up, the kinetic energy is then converted back into potential energy as you reach the top of the bounce.


How does a yo yo transfer potential energy to kinetic energy and back again as it moves up and down its string?

Before a yo yo is released, it has maximum potential energy and zero kinetic energy. As the yo yo goes down the string, its kinetic energy increases and it potential energy decreases. When the yo yo reaches the bottom of the string it has maximum kinetic energy and zero potential energy. As the yo yo goes back up the string, its kinetic energy decreases and potential energy increases until the yo yo reaches the top of the string, at which point kinetic energy is zero and potential energy is at its maximum.


Potential and kinetic energy?

Kinetic energy is energy that is moving or in motion. Potential energy is energy that is still but has potential to move. Both energy's can switch back and forth from each other. Energy is never lost, it just changes forms. Hope this helps!


Energy transformation when dropping a yoyo?

Potential - Kinetic - Potiential again as you drop the yo yo, the potential energy it had at its height is converted to kinetic energy. as it starts to come back up, it is converted back to potential energy

Related Questions

What is an example of kinetic energy being changed to potential energy and back again?

An example of kinetic energy being changed to potential energy and back again is a pendulum swinging. As the pendulum swings upward, its kinetic energy decreases while its potential energy increases. At the highest point of the swing, all the kinetic energy has been converted to potential energy. As it swings back down, the potential energy decreases while the kinetic energy increases.


An example of kinetic energy continuously being changed to potential energy and back again might be?

A pendulum is a classic example where kinetic energy is continually converted to potential energy and vice versa. As the pendulum swings, it reaches its highest point where it has maximum potential energy and minimum kinetic energy, and at the lowest point of its swing, the opposite is true with maximum kinetic energy and minimum potential energy.


What situation does not involve Potential energy being changed into kinetic energy?

1) Kinetic energy being turned back into potential energy. Look at a child on a swing. As the swing lowers (and they speed up), that's potential to kinetic. As the swing reaches its peak and stops, that kinetic to potential. 2) Burning is chemical energy being turned into heat and light. 3) In the Sun, nuclear fusion releases energy into heat and light.


How is energy converted as a pendulum swing?

In a pendulum, potential energy is converted to kinetic energy as the bob swings down. At the bottom of the swing, the kinetic energy is at its peak while potential energy is at its lowest. As the pendulum swings back up, this kinetic energy is then converted back into potential energy before the process repeats.


What is the energy of a playground swing at its highest point?

As the swing moves, potential energy changes into kinetic energy. At the highest position all energy is gravitational potential energy as the swing has stopped at its highest position. Then the energy is converted back to kinetic energy, KE as it descends.


What the kinetic potential energy conversion that occur when basketball bounces?

When a basketball bounces, the potential energy is converted into kinetic energy as it falls downward. This kinetic energy then allows the ball to compress upon impact with the floor, storing elastic potential energy. This potential energy is then converted back into kinetic energy as the ball rebounds back up.


You jump down and the trampoline streches potential or kinetic energy?

When you jump down onto the trampoline, the initial potential energy from your height is converted into kinetic energy as you descend. When you bounce back up, the kinetic energy is then converted back into potential energy as you reach the top of the bounce.


When pendulum stops has the kinetic energy changed to potential energy?

As the pendulum stops swinging, its maximum kinetic energy (the initial energy at the beginning of the swing) decreases, and its potential energy increases. Once the pendulum stops, it will have zero kinetic energy and maximum potential energy.


What type of energy transformation occurs when you throw a ball in the air and catch it?

When you throw a ball in the air and catch it, the initial energy transformation is from mechanical energy (kinetic) to potential energy (gravitational potential). When the ball falls back down, the potential energy is converted back to kinetic energy.


Can kinetic energy turn in to potential energy?

Yes, kinetic energy can be transformed into potential energy, and vice versa. For example, when a roller coaster reaches the top of a hill, its kinetic energy (motion) is converted into potential energy (height). Conversely, when the roller coaster descends the hill, the potential energy is converted back into kinetic energy.


What happens to potential energy when a ball is tossed into the air?

The potential energy of the ball decreases as it rises due to kinetic energy converting to gravitational potential energy. At the highest point of its trajectory, the potential energy is at its maximum. When the ball falls back down, the potential energy is converted back to kinetic energy.


What happens to the energy of a ball thrown upward?

The energy of a ball thrown upward primarily converts between potential energy and kinetic energy. As the ball gains height, its potential energy increases while its kinetic energy decreases. At the top of its trajectory, all of the energy is in the form of potential energy, and as it falls back down, potential energy converts back into kinetic energy.