Yes, lightning can convert nitrogen in the atmosphere into forms that plants can use, primarily through a process called nitrogen fixation. The high temperatures generated by a lightning strike cause nitrogen gas (N₂) to react with oxygen, forming nitrogen oxides (NO and NO₂). These nitrogen oxides can then be deposited into the soil through rainfall, ultimately enriching the soil with usable nitrogen compounds. This natural process contributes to the nitrogen cycle in ecosystems.
Yes it can convert into gas,bcoz it reqired high temperatue to convert liquid nitrogen to gas.
Nitrogen-fixing bacteria get nitrogen from the atmosphere, specifically from nitrogen gas (N2). They convert this nitrogen gas into a form that plants can use, such as ammonia or nitrate, through a process called nitrogen fixation.
The biotic forms of the nitrogen cycle involve various organisms that facilitate the conversion of nitrogen in different forms. Key players include nitrogen-fixing bacteria, which convert atmospheric nitrogen (N₂) into ammonia (NH₃) through a process called nitrogen fixation. Other important organisms include nitrifying bacteria, which convert ammonia into nitrites (NO₂⁻) and then into nitrates (NO₃⁻), and denitrifying bacteria, which convert nitrates back into atmospheric nitrogen, completing the cycle. Additionally, plants absorb nitrates and ammonium for growth, further integrating nitrogen into the ecosystem.
They are called nitryfying bacteria. Examples are Rhizobium, Anabena etc
Leguminous plants, such as legumes (e.g., peas, beans, alfalfa) and clover, have root nodules that contain nitrogen-fixing bacteria (like Rhizobia) that convert atmospheric nitrogen into nitrates through a process called nitrogen fixation. This capability makes them valuable for improving soil fertility and reducing the need for synthetic fertilizers.
Nitrogen Fixation
Nitrogen-fixing bacteria convert atmospheric nitrogen into a usable form for plants through a process called nitrogen fixation. These bacteria have the ability to take in nitrogen gas from the air and convert it into ammonia, a form of nitrogen that plants can absorb and use for growth. This process helps to enrich the soil with essential nutrients for plant growth.
Yes it can convert into gas,bcoz it reqired high temperatue to convert liquid nitrogen to gas.
no
Convert gaseous Nitrogen into nitrogen compounds.
Certain types of bacteria, such as Rhizobium and Azotobacter, can convert atmospheric nitrogen into a soluble form through a process called nitrogen fixation. These bacteria have the ability to convert atmospheric nitrogen gas (N2) into ammonium (NH4+), which can then be taken up by plants and used for growth.
Bacteria use a process called nitrogen fixation to convert nitrogen gas in the air to ammonia. This process involves specialized enzymes that break the strong triple bond in nitrogen gas and convert it into a form that can be used by plants and other organisms.
They absorb nitrogen from the air. Then nitrogen-fixing bacteria convert it to a useable form.
Yes, nitrogen-fixing bacteria can convert atmospheric nitrogen (N2) into forms of nitrogen (such as ammonia or nitrates) that are accessible to living organisms. By carrying out nitrogen fixation, these bacteria play a crucial role in making nitrogen available for plants and other organisms to use for essential biological processes.
Various bacteria are responsible for carrying out key processes in the nitrogen cycle. For example, nitrogen-fixing bacteria convert atmospheric nitrogen into a form usable by plants. Other bacteria, like nitrifying bacteria, convert ammonium into nitrates, which can then be used by plants. Denitrifying bacteria convert nitrates back into atmospheric nitrogen, closing the cycle.
Microorganisms living in the soil convert it through chemosynthesis.
Nitrogen-fixing bacteria are the organisms that convert atmospheric nitrogen into a form that is usable by plants, which in turn are consumed by humans as food. Legumes such as peas, beans, and clover have a symbiotic relationship with these bacteria, allowing them to convert nitrogen into a usable form for plants.