The explanation starting that when rocks are deformed, they break, releasing the stored energy that results in the vibrations of an earthquake.
the rocks are deformed they break relasing the stored energy
The four stages of the elastic rebound hypothesis are: (1) rocks on either side of a fault are deformed by stress, (2) stress overcomes friction causing rocks to break and shift, (3) stored elastic energy is released as the rocks rebound to their original shape, and (4) seismic waves are generated causing an earthquake.
The hypothesis that explains the release of energy during an earthquake is called the elastic rebound theory. This theory states that rocks on either side of a fault are deformed by tectonic stresses until they reach a breaking point. Once this breaking point is exceeded, energy is released in the form of seismic waves, causing an earthquake.
This phenomenon is known as elastic rebound and it occurs when a rock that has been subject to stress suddenly releases that stress, causing it to return to its original shape. This can happen during an earthquake when built-up strain in the rock is released, leading to rapid deformation and rebound.
The elastic rebound theory for the origin of earthquakes was first proposed by American geologist Harry Fielding Reid in 1910. This theory states that tectonic stress builds up along faults until it exceeds the strength of the rocks, causing them to suddenly break and release energy in the form of an earthquake.
elastic rebound theory
elastic rebound theory
the elastic rebound theory
The elastic-rebound theory was found from the 1906 San Francisco earthquake
the rocks are deformed they break relasing the stored energy
The sudden return of elastically deformed rock to sit original shape is called elastic rebound. Elastic rebound happens when stress on rock along a fault becomes so grat that the rock breaks or fails. This failure causes the rocks on either side of the fault to jerk past one another. During this sudden motion, large amounts of energy are released. This energy travels through rock as seismic waves. These waves cause earthquakes. The strength of an earthquake is related to the amount of energy that is released during elastic rebound.
the tendency for the deformed rock along a fault to spring back after an earthquake
The four stages of the elastic rebound hypothesis are: (1) rocks on either side of a fault are deformed by stress, (2) stress overcomes friction causing rocks to break and shift, (3) stored elastic energy is released as the rocks rebound to their original shape, and (4) seismic waves are generated causing an earthquake.
The hypothesis that explains the release of energy during an earthquake is called the elastic rebound theory. This theory states that rocks on either side of a fault are deformed by tectonic stresses until they reach a breaking point. Once this breaking point is exceeded, energy is released in the form of seismic waves, causing an earthquake.
This phenomenon is known as elastic rebound and it occurs when a rock that has been subject to stress suddenly releases that stress, causing it to return to its original shape. This can happen during an earthquake when built-up strain in the rock is released, leading to rapid deformation and rebound.
The hypothesis that explains the release of energy during an earthquake is called the elastic rebound theory. According to this theory, stress builds up along a fault line until it exceeds the strength of the rocks, causing them to suddenly break and release accumulated energy in the form of seismic waves.
elastically