If you need 50 amps you can use a 60 amp generator or any other generator rated to supply more amps. The voltage, 110 v or 240 v, must be the right voltage for the load used.
75 Amps theoretically Need to know if the generator is 3 phase or single phase.
To find the amperage of a generator, you can use the formula: Amps = Watts / Volts. Assuming a standard voltage of 120V for household generators, you can calculate the amperage as: 8500 Watts / 120 Volts = 70.83 Amps.
Watts = Amps x Volts. Amps = Watts/Volts. 10000/120 = 83.3 amps can be used at 120 volts. On a generator that large it is most likely that it also has the capacity to produce 240 volts. 10000/240 = 41.6 amps can be used at 240 volts. What you can connect to the generator will be totals of the amperage of devices that do not go above these amp ratings.
To determine the amperage produced by a 22 kW generator, you can use the formula: Amps = Watts / Volts. For a three-phase generator operating at 400 volts, the calculation would be 22,000 watts / 400 volts = 55 amps. For a single-phase generator operating at 230 volts, it would be 22,000 watts / 230 volts = approximately 95.65 amps. Therefore, the amperage output depends on the voltage used.
To determine the current in amps produced by a 10 kV generator, you need to know the power output in watts. The formula to calculate amps is: Amps = Watts / Volts. For example, if the generator produces 10 kW (10,000 watts), the current would be 10,000 watts / 10,000 volts = 1 amp. Therefore, without knowing the specific power output, the amperage cannot be determined.
75 Amps theoretically Need to know if the generator is 3 phase or single phase.
To find the amperage of a generator, you can use the formula: Amps = Watts / Volts. Assuming a standard voltage of 120V for household generators, you can calculate the amperage as: 8500 Watts / 120 Volts = 70.83 Amps.
36.6 amps maximum at 120 volts, but should not be loaded to over 29 amps. At 240 volts it will produce a maximum of 18.3 amps but never loaded to any more than 14.6 amps.
Watts = Amps x Volts. Amps = Watts/Volts. 10000/120 = 83.3 amps can be used at 120 volts. On a generator that large it is most likely that it also has the capacity to produce 240 volts. 10000/240 = 41.6 amps can be used at 240 volts. What you can connect to the generator will be totals of the amperage of devices that do not go above these amp ratings.
yes, it has an output of 20 amps @ 120v so it will power any standard refrigerator. I believe a 900 Watt Generator will only handle 7.5 amps at 120 Volts.
If your generator is rated at 1000 watts continuous......and you are using 120V.....available amps are 1000/120 =8.3 .
To determine the current in amps produced by a 10 kV generator, you need to know the power output in watts. The formula to calculate amps is: Amps = Watts / Volts. For example, if the generator produces 10 kW (10,000 watts), the current would be 10,000 watts / 10,000 volts = 1 amp. Therefore, without knowing the specific power output, the amperage cannot be determined.
Small generators are sized in watts. Watts is the product of amps times volts. To properly answer this question a voltage for your 10 amps must be stated. That said small generator outputs are usually 120/240 volts in North America. So 10 amps at 120 volts equal 1200 watts. 10 amps at 240 volts equal 2400 watts. A 3000 watt generator will be amply for your 10 amp load.
6 amps.
If running at 120 volts that is 8.33 ampsIf running at 120 volts that is 8.33 amps
First you need to specify what voltage you require the generator to supply...Lets Assume its 240 Volts AC. Watts=Volts x Amps so 240x1200= 28.8 Kw. Then you have to take the efficiency of the generator into account. Mechanical power in is usually quite a bit more than the electrical power you get out...The difference is mostly the mechanical and thermal losses added together. If we say the generator is 70% efficient then you will need a generator 30% more powerful to supply a constant 1200 Amps...Thats a generator of about 38-40 Kw.
Use the formula I = W/E, Amps = Watts/Volts. Apply the voltage of the generator to the formula and the results will be the amount of amperage the generator will produce.