Nuclear fusion is the process of squeezing two lighter atoms together to make heavier atoms; nuclear fission is the process of splitting heavier atoms into lighter ones. In both processes, some of the mass of the original atoms are converted into energy; fusion tends to convert more mass into energy than fission does, so fusion tends to create more energy. Heavier atoms needed for a fission chain reaction tend to be unstable and radioactive, and thus the fission process tends to produce more radioactivity.
I currently use nuclear fusion.
Nuclear fusion doesn't produce energy.
The two processes that produce nuclear changes are nuclear fusion and nuclear fission. Nuclear fusion involves combining two atomic nuclei to form a heavier nucleus, while nuclear fission involves splitting a heavy nucleus into smaller ones. Both processes release a large amount of energy.
Nuclear processes that can release large amounts of energy.
The process generating solar energy is one of nuclear fusion.
I currently use nuclear fusion.
Definition: energy from nuclear fission or fusion: the energy released by nuclear fission or fusion
Nuclear fusion
The antonym of nuclear fusion is nuclear fission. Nuclear fusion is the process of combining atomic nuclei to form a heavier nucleus, while nuclear fission is the process of splitting a heavy atomic nucleus into smaller nuclei.
No Strontium is produced by nuclear fission not fusion.
nuclear fission and nuclear fusion
Nuclear fusion doesn't produce energy.
The two processes that produce nuclear changes are nuclear fusion and nuclear fission. Nuclear fusion involves combining two atomic nuclei to form a heavier nucleus, while nuclear fission involves splitting a heavy nucleus into smaller ones. Both processes release a large amount of energy.
The two types of nuclear energy are nuclear fission nuclear fusion. In nuclear fission, the nuclei of the atoms are split. In nuclear fusion, as the name suggests, the nuclei of the atoms are joined together.
Energy from nuclear fusion is around 400 times more than that of nuclear fission for same mass.
Nuclear processes that can release large amounts of energy.
Nuclear bombs can use either nuclear fission or nuclear fusion as the primary mechanism of energy release. Most nuclear bombs in current arsenals rely on nuclear fission reactions, while thermonuclear bombs use a fission reaction to trigger a fusion reaction.