Action Potential
the ventricular depolarization, which masks the atrial repolarization wave on the electrocardiogram. This is because the QRS complex is much larger than the atrial repolarization wave and overlaps with it, making it difficult to distinguish on the ECG.
The resting potential is the stable membrane potential of a cell at rest, typically around -70mV. Repolarization refers to the return of the membrane potential to its resting value after depolarization, where the cell becomes more negative again due to potassium channels opening.
After depolarization, the neuron undergoes repolarization, during which the cell's membrane potential returns to resting state. This is followed by hyperpolarization, where the membrane potential briefly becomes more negative than the resting state, before returning to its baseline. Finally, the neuron enters a refractory period, during which it is temporarily unable to generate another action potential.
Depends on what stage you are talking about. Stimulus of sodium ions from dendrites of other neurons must reach a threshold. Once that threshold is reached, sodium ions quickly diffuse into the neuron via facilitative diffusion, depolarizing the neuron. Upon this occurring, sodium channels close and potassium ions are pumped out of the neuron via active transport, leading to repolarization of the neuron.
No, the neuron is not ready to fire during the refractory period. This period occurs immediately after the neuron has fired and is characterized by a temporary inability to generate another action potential.
repolarization
yes
Membrane potential - a nerve cell set and ready to fire;"The wave of reverse polarity" i.e. sodium versus potassium trans-cell-membrane ion passaging - a nerve cell firing; andRecharge period - the regeneration time.
repolarization
Ventricles
Repolarization
This process is called nerve conduction.
the ventricular depolarization, which masks the atrial repolarization wave on the electrocardiogram. This is because the QRS complex is much larger than the atrial repolarization wave and overlaps with it, making it difficult to distinguish on the ECG.
The resting potential is the stable membrane potential of a cell at rest, typically around -70mV. Repolarization refers to the return of the membrane potential to its resting value after depolarization, where the cell becomes more negative again due to potassium channels opening.
After depolarization, the neuron undergoes repolarization, during which the cell's membrane potential returns to resting state. This is followed by hyperpolarization, where the membrane potential briefly becomes more negative than the resting state, before returning to its baseline. Finally, the neuron enters a refractory period, during which it is temporarily unable to generate another action potential.
Depends on what stage you are talking about. Stimulus of sodium ions from dendrites of other neurons must reach a threshold. Once that threshold is reached, sodium ions quickly diffuse into the neuron via facilitative diffusion, depolarizing the neuron. Upon this occurring, sodium channels close and potassium ions are pumped out of the neuron via active transport, leading to repolarization of the neuron.
refractory period. This is a brief time after a neuron has fired an action potential, during which it cannot generate another action potential in response to a new stimulus. This period is crucial for maintaining the directionality of signal transmission in the nervous system.