nucleons are made of nuclear molecules. these specific types of molecules are sensitive to strong forces like gravity and other forces like black holes.
The strong interaction, also known as the strong nuclear force or the strong force. This force is about 100 times stronger than the electromagnetic force that would be repelling the protons away from each other.
Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.
The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.
The opposite force to the strong nuclear force is the electromagnetic force. The strong nuclear force holds atomic nuclei together, while the electromagnetic force governs interactions between charged particles.
Inside the nucleus of an atom, the primary forces at work are the strong nuclear force and the electromagnetic force. The strong nuclear force, which acts between nucleons (protons and neutrons), is the dominant force that holds the nucleus together, overcoming the repulsive electromagnetic force between positively charged protons. This strong force operates at very short distances, binding nucleons tightly within the nucleus. Additionally, the weak nuclear force plays a role in certain types of nuclear reactions, but it is not responsible for holding the nucleus together.
It is the force between the nucleons within the nucleus. It is due to the exchange of mesons in between the nucleons. This force is a strange one and it has shortest range. It is some 1040 times greater than the gravitational attractive force between the nucleons.
The strong force hold quarks together in nucleons and holds nucleons together. The electromagnetic force holds the electrons in the atom.
The strong interaction, also known as the strong nuclear force or the strong force. This force is about 100 times stronger than the electromagnetic force that would be repelling the protons away from each other.
The force between nucleons is called nuclear force.
The force binding the individual nucleons (neutrons and protons) together inside the nucleus of an atom. :)
Nucleons, which are protons and neutrons, are held together by the strong nuclear force. This force overcomes the electrostatic repulsion between positively charged protons in the nucleus, keeping the nucleus stable.
The strong atomic force holds protons (and neutrons) together in the nucleus.
Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.Protons repel each other electrically. However, there is another force that counteracts that: the strong force (or "residual strong force") that acts between nucleons (protons and neutrons). Note that two protons alone can't stick together; but if there are also a few neutrons, the strong force becomes dominant.
and the fact that it is stable to estimate the strength of the strong nuclear force between nucleons. assume the distance between nucleons is 10−15 m
This is mainly related to the attractive forces between the nucleons - by the strong nuclear force.
The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.The so-called "strong force". It is, precisely, a force between nucleons (protons and neutrons), acts only at very short distances, and is a different force from the better-known electric, magnetic and gravitational forces.
The opposite force to the strong nuclear force is the electromagnetic force. The strong nuclear force holds atomic nuclei together, while the electromagnetic force governs interactions between charged particles.