Not necessarily.
Yes, that's correct. The longer wavelengths of radio waves mean that radio telescopes have poorer angular resolution compared to optical telescopes. This is because resolving power is inversely proportional to the wavelength of the electromagnetic waves being observed.
No, they do not. The angular resolution of a telescope is determined by the wavelength of the radiation it is measuring and its diameter. Since optical telescopes detect shorter wavelengths than radio telescopes, they generally have better angular resolution for viewing fine details.
Radio telescopes are generally much larger than optical telescopes for two reasons: First, the amount of radio radiation reaching Earth from space is tiny compared with optical wavelengths, so a large collecting area is essential. Second, the long wavelengths of radio waves mean that diffraction severely limits the resolution unless large instruments are used.
Yes, that is correct.
Light telescopes, such as optical telescopes, focus on visible light to observe celestial objects, while radio telescopes detect radio waves emitted by these objects. The design of optical telescopes involves lenses or mirrors to collect and concentrate light, whereas radio telescopes use large parabolic dishes to capture and amplify radio signals. Additionally, optical telescopes are limited by atmospheric conditions and light pollution, while radio telescopes can operate effectively through clouds and at night. This leads to different applications and discoveries in astronomy for each type of telescope.
Yes, that's correct. The longer wavelengths of radio waves mean that radio telescopes have poorer angular resolution compared to optical telescopes. This is because resolving power is inversely proportional to the wavelength of the electromagnetic waves being observed.
Radio telescopes collect radio waves. Optical telescopes capture visible light waves.
No they are not bigger then radio telescopes at all.
No, they do not. The angular resolution of a telescope is determined by the wavelength of the radiation it is measuring and its diameter. Since optical telescopes detect shorter wavelengths than radio telescopes, they generally have better angular resolution for viewing fine details.
Radio telescopes collect radio waves. Optical telescopes capture visible light waves.
As far as I know, there is no "optical radio telescope". There are, separately, optical telescopes (which work with visible light), and radio telescopes (which work with radio waves).
interferometers because charge-coupled devices are only used in optical telescopes
Radio telescopes are generally much larger than optical telescopes for two reasons: First, the amount of radio radiation reaching Earth from space is tiny compared with optical wavelengths, so a large collecting area is essential. Second, the long wavelengths of radio waves mean that diffraction severely limits the resolution unless large instruments are used.
As far as I know, there is no "optical radio telescope". There are, separately, optical telescopes (which work with visible light), and radio telescopes (which work with radio waves).
using radio waves it collects the data.
They are optical telescopes.
Yes, that is correct.