Each shell represents a distinct state of electron energy.
Because they have only one electron in their valency shell. The second oxidation state would require the atom to lose an electron from its penultimate shell which is full.
The ground state electron configuration of hydrogen is 1s^1, meaning it has one electron in the 1s orbital. Helium in its ground state has an electron configuration of 1s^2, indicating it has two electrons in the 1s orbital. So, the main difference is that hydrogen has one electron in its outer shell while helium has two electrons in its outer shell.
The energy released on adding an electron to an isolated gas phase atom is called electron affinity. It represents the willingness of an atom to accept an additional electron. The process can release energy if the atom's electron affinity is negative, indicating that the atom is stable after gaining an electron.
Noble gases have a full outer electron shell, making them stable and unreactive. They do not easily gain or lose electrons since their electron configuration is already at its most stable state. This full outer shell configuration, known as the octet rule, makes noble gases chemically inert.
The ground state configuration of 1s²2s²2p²3s²3p¹ is [Ne]3s²3p¹. This notation represents the electron configuration in shorthand form, where [Ne] represents the electron configuration of the noble gas neon (1s²2s²2p⁶).
An electron energy level is also known as an electron shell. It represents the energy levels at which electrons orbit around the nucleus of an atom.
The key to "happiness" for an atom is a full outer electron shell. (The outer electron shell is called the valence shell.) There are two conditions that cause a shell not to be full. Either it has only an electron or two (or three) in the outer electron shell or it's short an electron or two in that outer shell. The direct answer to the question is that if an element is chemically active, its outer electron shell is incomplete or is not full.
ionization energy
It represents an Energy State
Because they have only one electron in their valency shell. The second oxidation state would require the atom to lose an electron from its penultimate shell which is full.
The electrons with the least amount of energy in a calcium atom in the ground state are located in the innermost electron shell, closest to the nucleus. These electrons have lower energy levels as they are shielded by the outer electron shells.
This electron configuration represents Sr or Strontium. 2-8-18-7-3 represents Sr in the excited state; 2-8-18-8-2 represents Sr in the ground state.
The groundstate for Sodium (11-Na) is: 1S2 , 2S2, 2P6, 3S1 If you count the ^powers you notice it'll sum to 11, when Sodium is excited the outermost electron (3S1) will be excited from the 3S shell to the next shell up which is the 3P shell. The "core" electron configuration doesn't change so the first excited state is simply: 1S2 , 2S2, 2P6, 3P1 For the next excited state the electron that is now in the 3P shell will transition to the 4S shell before the 3D shell
The ground state electron configuration of hydrogen is 1s^1, meaning it has one electron in the 1s orbital. Helium in its ground state has an electron configuration of 1s^2, indicating it has two electrons in the 1s orbital. So, the main difference is that hydrogen has one electron in its outer shell while helium has two electrons in its outer shell.
Based on Heisenberg's uncertainty principle, there is no way possible to have a quantum number for position since the electron's second quantum number already gives you an exact value for its angular momentum.Bohr calculated the most probable radius of the electron cloud (which he mistakenly thought was an actual distance) getting the number 5.29X10-11 m.What I think the asker is speaking of is the quantum number that refers to energy level, n. Though not a physical distance it may be interpreted, using the Bohr model, how "far" away an electron is from the ground state, which some would believe (incorrectly) that this is a function of distance from the nucleus.
To fill their electron shells - this represents a lower energy state.
Lithium typically exists in the +1 ionic state. This means it loses one electron to achieve a stable electron configuration of 2 electrons in its outer shell.