Think of it like this: Every time the electron is handed to another cytochrome, it pumps H+ across a membrane to create a gradient. NADH sticks the electron in higher up the chain than FADH2 does so the NADH electron pumps more protons since it is passed between more cytochromes than the FADH2 electrons. Since every proton pumped across is an ADP-->ATP reaction, the more protons an electron can pump, the more energy you get from that electron. FADH2 is around because it has roles in other areas like synthesis, so by being a little more multifunctional than NADH it sacrifices some in the electron transport role.
-Jelanen
NADH
Glycolysis
NADH and FADH2
NADH and FADH2
NADH and FADH2
it gets electrons[2 eletrons from NADH and 2 electrons from FADH2] from NADH and FADH2....In case of NADH- it is directly from glycolysis but in case of FADH2-it is not directly attached to ETC but succinate is oxidised to fumarate realising FADH2
NADH
4 ATP molocules are made from 1 NADH and 1 FADH2 MO
NADH and FADH2 are electron carriers that power the electron transport chain in cellular respiration. This process generates ATP, the cell's main energy currency, by transferring electrons from NADH and FADH2 to molecular oxygen.
FADH2 and NADHIt gives four products.They are ATP,CO@, FADH2 and NADH
Glycolysis
NADH and FADH2
Electrons are brought to the electron transport chain by high-energy electron carriers such as NADH and FADH2. These carriers donate electrons to the chain, which is then used to generate ATP through oxidative phosphorylation.
Molecules that donate electrons to the electron transport chain include NADH and FADH2, which are produced during glycolysis and the citric acid cycle. These molecules transfer their electrons to protein complexes in the electron transport chain, ultimately leading to the production of ATP through oxidative phosphorylation.
ATP, NADH, FADH2, and CO2
NADH and FADH2
NADH and FADH2