answersLogoWhite

0

Free electrons in a conductor are impelled by an electric field created when a voltage is applied across the conductor. This electric field exerts a force on the free electrons, causing them to drift in the direction opposite to the electric field. As the electrons move, they collide with lattice ions, which impedes their flow, resulting in resistance. The overall movement of these electrons constitutes an electric current.

User Avatar

AnswerBot

5d ago

What else can I help you with?

Continue Learning about Natural Sciences

Why electron freely in a metal?

The term conductor is generally applied to a substance or material that has a lot of free electrons in it. The name conductor is applied because the free electrons are already there. A material does not have free electrons because it is a conductor, but is a conductor because it has a lot of free electrons. That said, let's look at what's going on. These free electrons have energies that permit them to "wander" through the conductor; they're not "locked into" the structure of the material. And when a voltage (potential difference) is applied, current flows through the conductor because the free electrons are moving. They're made to move by the applied voltage. If we take the case of a wire in a circuit, the wire is a conductor. This wire, say a copper one, has many free electrons in it, and when we apply a voltage, electrons move. The voltage forces electrons into one end of the wire, and the free electrons "shift over" and electrons emerge from the other end of the wire. This movement of free electrons in response to an applied voltage through an conductor is the essence of current flow in that conductor.


Is steel a conductor or an insulator?

Yes Every metal is a conductor because of the free electrons (Except Silicon and Germanium; They are semi-metals) Yes, steel is a conductor


How many free electrons in semi-conductor?

A semiconductor typically has fewer free electrons than a conductor but more than an insulator. The number of free electrons in a semiconductor can vary based on factors like doping and temperature, but in general, it is on the order of 10^15 to 10^19 free electrons per cubic centimeter.


Why graphite is a better conductor than diamond?

Graphite is a better conductor than diamond because graphite has delocalized electrons in its structure that can move freely along its layers, allowing for better electrical conductivity. In contrast, diamond has a tightly bound structure with no free electrons, leading to poor electrical conductivity.


Why selenium is photo conductor?

when light falls on the it its electrons become excited and become free for conductivity that's why selenium is a photo conductor

Related Questions

What causes resistance in electricity?

An electrical current is simply the flow of free electrons in and on the conductors. So they are a bit like water molecules in a garden hose. And like those water molecules the flow of free electrons can be physically impeded by whatever is in or on the electrical conductor. When a material is a good conductor, the atoms and molecules of that good conductor do not get in the way of the free electrons. They do not resist the flow of those electrons very much. So even with just a low voltage to push the electrons along, the flow, the current of the electrons is high. But when a material is a bod conductor, the atoms and molecules of that bad conductor do physically get in the way of those free electrons so that they cannot flow freely through the conductor. The resistance is high in a poor conductor. So it takes a relatively higher voltage to push electrons along in a bad conductor...if indeed they can be pushed at all. Some materials are so bad at conducting it's almost impossible to move those electrons along.


What causes resistance in electrical conductors?

An electrical current is simply the flow of free electrons in and on the conductors. So they are a bit like water molecules in a garden hose. And like those water molecules the flow of free electrons can be physically impeded by whatever is in or on the electrical conductor. When a material is a good conductor, the atoms and molecules of that good conductor do not get in the way of the free electrons. They do not resist the flow of those electrons very much. So even with just a low voltage to push the electrons along, the flow, the current of the electrons is high. But when a material is a bod conductor, the atoms and molecules of that bad conductor do physically get in the way of those free electrons so that they cannot flow freely through the conductor. The resistance is high in a poor conductor. So it takes a relatively higher voltage to push electrons along in a bad conductor...if indeed they can be pushed at all. Some materials are so bad at conducting it's almost impossible to move those electrons along.


What are Number of free electrons in good conductor in electricity?

Millions of free electrons


What happens to the electrons in a conductor when there is a potential difference between the conductor's ends?

The free electrons in a conductor will, when a difference of potential (voltage) is applied at its ends, participate in electron current flow (or just current, if you prefer). The voltage applied to the conductor will drive current through the conductor, and the free electrons will support current flow. These electrons will actually move through the conductor. As electrons are driven into one end of the conductor, the free electrons "shift over" and electrons stream out the other end of the conductor. This is the essence of current flow in conductors.


Why electron freely in a metal?

The term conductor is generally applied to a substance or material that has a lot of free electrons in it. The name conductor is applied because the free electrons are already there. A material does not have free electrons because it is a conductor, but is a conductor because it has a lot of free electrons. That said, let's look at what's going on. These free electrons have energies that permit them to "wander" through the conductor; they're not "locked into" the structure of the material. And when a voltage (potential difference) is applied, current flows through the conductor because the free electrons are moving. They're made to move by the applied voltage. If we take the case of a wire in a circuit, the wire is a conductor. This wire, say a copper one, has many free electrons in it, and when we apply a voltage, electrons move. The voltage forces electrons into one end of the wire, and the free electrons "shift over" and electrons emerge from the other end of the wire. This movement of free electrons in response to an applied voltage through an conductor is the essence of current flow in that conductor.


A good conductor has lots of -------------- electrons?

freefreefreefree


What is present in a conductor when an electrical charge moves through it?

In a conductor, free electrons are present that can move when an electrical charge is applied. These free electrons are responsible for the flow of current through the conductor.


Why is alumium a good conductor?

Because it has free electrons


When a voltage is applied to a conductor free electrons?

When a voltage is applied to a conductor, free electrons gain energy and move in response to the electric field created by the voltage. This movement of electrons constitutes an electric current flowing through the conductor.


How does potential difference induce an electric current?

A potential difference, or voltage, creates an electric field along a conductor. This electric field exerts a force on the free electrons within the conductor, causing them to move in response to the voltage. This movement of electrons constitutes an electric current flowing through the conductor.


Is metal a conductor of electricity?

For a material to conduct electricity, it must have free movable electric charges, such as free electrons or free ions, in order to 'carry' electricity. In the case of metals, there is a 'sea' of delocalized electrons. These free electrons can 'carry' the electricity, and thus, it is a conductor.


Is metal a electrical conductor?

For a material to conduct electricity, it must have free movable electric charges, such as free electrons or free ions, in order to 'carry' electricity. In the case of metals, there is a 'sea' of delocalized electrons. These free electrons can 'carry' the electricity, and thus, it is a conductor.