They discovered a pattern of reverse and normal polarity in the rock bodies of the ocean floor that indicated that oceanic crust was constantly being formed over time. Polarity shifts in the Earth had already been noted in continental crustal rock. With the advent of radiometric dating, core samples were taken and dated, confirming that the youngest rock is found at the ridge and rock age advances with distance from the ridge.
Scientists discovered that rocks farther away from the mid-ocean ridge were older than those closer to it through radiometric dating of the rocks. By analyzing the age of the rocks using isotopes with known half-lives, they were able to determine that the rocks get progressively older as you move away from the ridge due to the process of seafloor spreading.
Scientists discovered that rocks farther away from the mid-ocean ridge were older than those near it through radiometric dating of the rocks. By measuring the age of the minerals within the rocks, they found that the farther rocks were older because they had been slowly moving away from the ridge as new crust formed at the ridge and pushed older crust farther out.
thye pulled rocks from a drill and studied them obviously
Sediments become thicker away from the mid ocean ridge. This is because the oceanic crust away from the mid ocean ridge is older than the crust close to it, so sediment has had more time to accumulate.
Yes, the fact that ocean crust is older the farther away it is from an ocean ridge supports the theory of plate tectonics. This is because new oceanic crust is formed at ocean ridges through the process of seafloor spreading, where molten rock rises and solidifies, pushing older crust away from the ridge. By observing the age of oceanic crust, scientists can trace the movement of tectonic plates and support the theory of plate tectonics.
Scientists discovered that rocks farther away from the mid-ocean ridge were older than those closer to it through radiometric dating of the rocks. By analyzing the age of the rocks using isotopes with known half-lives, they were able to determine that the rocks get progressively older as you move away from the ridge due to the process of seafloor spreading.
Scientists discovered that rocks farther away from the mid-ocean ridge were older through radiometric dating of the rocks. By analyzing the age of the minerals within the rocks, researchers found that the rocks closest to the ridge were younger, while those farther away were older, supporting the theory of seafloor spreading.
They measure how far away the rock is from the mid-ocean ridge. The farther, the older.
i never know
Scientists discovered that rocks farther away from the mid-ocean ridge were older than those near it through radiometric dating of the rocks. By measuring the age of the minerals within the rocks, they found that the farther rocks were older because they had been slowly moving away from the ridge as new crust formed at the ridge and pushed older crust farther out.
thye pulled rocks from a drill and studied them obviously
they used the magnifier to launch the band to map the mid-ocean ridge
they used the magnifier to launch the band to map the mid-ocean ridge
they used the magnifier to launch the band to map the mid-ocean ridge
Oceanic crust that was farther away from a mid-ocean ridge was older that crust closer to the ridge
Sonar.
there is a mid-atlantic ridge