Heat information is conducted through neurones. Higher frequency action potentials are perceived in the brain as a hotter stimulus. So the heated rod would have sent higher-frequency action potentials than the cool rod would have.
The action potential is generated when a stimulus causes a change in the electrical potential across the cell membrane, resulting in the opening of voltage-gated ion channels. This allows an influx of sodium ions, causing depolarization of the membrane and initiation of the action potential.
An action potential is generated at the axon hillock of a neuron, which is the region where the cell body (soma) transitions into the axon. This is where the concentration of voltage-gated sodium channels is highest, allowing for the initiation of the action potential.
No, subthreshold stimulation is not sufficient to trigger an action potential. The membrane potential needs to reach a certain threshold level for an action potential to be generated. Subthreshold stimulation only produces graded potentials that do not reach the threshold for firing an action potential.
voltage gated ion channel
The threshold potential must be reached for the neuron to fire. This is the level of depolarization that triggers an action potential to be generated and propagated along the neuron.
The action potential is generated when a stimulus causes a change in the electrical potential across the cell membrane, resulting in the opening of voltage-gated ion channels. This allows an influx of sodium ions, causing depolarization of the membrane and initiation of the action potential.
An action potential is generated at the axon hillock of a neuron, which is the region where the cell body (soma) transitions into the axon. This is where the concentration of voltage-gated sodium channels is highest, allowing for the initiation of the action potential.
Potassium.
it contracts
Myocardial contraction
No, subthreshold stimulation is not sufficient to trigger an action potential. The membrane potential needs to reach a certain threshold level for an action potential to be generated. Subthreshold stimulation only produces graded potentials that do not reach the threshold for firing an action potential.
Action potentials are generated on a part of the neuron called the 'axon hillock' - the proximal most portion of the axon.
The action potential travels in one direction because of the refractory period, which prevents the neuron from firing again immediately after an action potential has been generated. This ensures that the signal moves in a linear fashion along the neuron.
voltage gated ion channel
The threshold potential must be reached for the neuron to fire. This is the level of depolarization that triggers an action potential to be generated and propagated along the neuron.
An action potential propagates unidirectionally along an axon because of the refractory period, which prevents the neuron from firing in the opposite direction immediately after an action potential is generated. This ensures that the signal travels in one direction, from the cell body to the axon terminal.
separate the pieces and put them on an unheated metal tray