DNA mutations can pass from parents to off spring only if the mutation occurs in the sex cells (eggs and sperm).
Individuals with a mutation can pass it on to their offspring because the mutation is present in their germline cells (sperm or eggs), which are used to create offspring. This means that the genetic mutation is incorporated into the DNA of the offspring, resulting in them inheriting the mutation.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.
A mutation in a germ cell (sperm or egg) may be passed to the woman and her offspring during fertilization. If the mutation occurs in the sperm or egg, it can be incorporated into the genetic material of the resulting zygote, leading to heritable changes in the offspring. This type of mutation can affect the offspring's traits and potentially contribute to genetic disorders.
The mutation may be passed on to an offspring. Depending on the mutation, it may have no effect, or it could be lethal.
Individuals with a mutation can pass it on to their offspring because the mutation is present in their germline cells (sperm or eggs), which are used to create offspring. This means that the genetic mutation is incorporated into the DNA of the offspring, resulting in them inheriting the mutation.
Not usually. Only In certain circumstances, can a mutation be passed on to offspring; such as Downs-syndrome.
A mutation in a sex cell, such as a sperm or egg cell, can be passed on to offspring and affect future generations. In contrast, a mutation in a non-sex cell will only affect the individual and is not passed on to offspring.
A mutation can be passed on if it occurs in a sex cell. This is because offspring have a copy of the parent's genetic code, so any mutation that is present here will also be present in the offspring.
Mutations during meiosis can lead to genetic variability in offspring. Depending on the type and location of the mutation, it can result in genetic disorders, altered traits, or have no noticeable effect.
A mutation in a human skin cannot be passed on to an offspring, since it is only a somatic mutation which is acquired. The mutation that can be passed on to an offspring is called a germline mutation, which happens in the egg and sperm.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.
A mutation in a sex cell may be passed on to an offspring. A mutation in a somatic (body) cell cannot be passed on to an offspring, but can potentially cause cancer in the person who has the mutation.