answersLogoWhite

0

v2=(m1*v1)/m2

when:

v2= velocity after collision

m1 = mass before collision

v1 = velocity before collision

m2 = total mass after collision

law of conservation of momentum

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Natural Sciences

How do you calculate the collision rate of a molecule in a maxwellian gas?

The collision rate of a molecule in a Maxwellian gas can be calculated using the formula: collision rate = n * σ * v, where n is the number density of gas molecules, σ is the collision cross-section, and v is the average velocity of the molecules. The collision rate represents the number of collisions per unit time experienced by a single molecule in the gas.


What does it mean that the collisions of gas particles are perfectly elastic?

In a perfectly elastic collision of gas particles, no kinetic energy is lost during the collision. This means that the total kinetic energy of the particles before the collision is equal to the total kinetic energy after the collision. As a result, the momentum and speed of the particles are conserved.


How do I calculate the velocity of an object which hits a stationary object if I know the mass of both objects and the distance the stationary object was moved what else must I know to calculate?

In addition to the mass of both objects and the distance the stationary object was moved, you need to know the coefficient of restitution or the type of collision (elastic or inelastic). This information will help you determine how much kinetic energy was transferred during the collision and allow you to calculate the velocity of the moving object before and after the collision.


How do you calculate impact Energy for Pneumatic Hammers or how to calculate the Hammer piston velocity?

Hammer piston velocity is: Velocity of an pneumatic cylinder can be calculated as s = 28.8 q / A (1) where s = velocity (inches/sec) q = volume flow (cubic feet/min)A = piston area (square inches) Do you know how to calculate the impact PSI? - This is where I get lost.


To find the acceleration of an object moving in a straight line you must calculate the charge in distance during unit of time?

To find the acceleration of an object moving in a straight line, you must calculate the change in velocity during a unit of time. Acceleration is the rate of change of velocity over time, not distance. It is given by the formula acceleration = (final velocity - initial velocity) / time.

Related Questions

How to calculate velocity after collision in a physics experiment?

To calculate velocity after a collision in a physics experiment, you can use the conservation of momentum principle. This involves adding the momentum of the objects before the collision and setting it equal to the momentum of the objects after the collision. By solving this equation, you can determine the velocity of the objects after the collision.


How can one determine the velocity after a collision?

To determine the velocity after a collision, you can use the principles of conservation of momentum and energy. By analyzing the masses and velocities of the objects involved before and after the collision, you can calculate the final velocity using equations derived from these principles.


Two balls of masses 500gram and 200 gram are moving at valocities 4m s and 8m s respectively on collision they stick together find the velocity af the system after collision?

To find the velocity of the system after the collision, we can use the principle of conservation of momentum. The total momentum before the collision is equal to the total momentum after the collision. Total momentum before collision = (mass1 * velocity1) + (mass2 * velocity2) Total momentum after collision = (mass_system * velocity_final) Using these equations, you can calculate the final velocity of the system after the collision.


Two balls a and b are moving towards each other with speeds 5ms and 2ms respectively. what will be the velocity of a just after a perfectly inelastic head-on collision?

In a perfectly inelastic collision, the two objects stick together after the collision. The velocity of the objects after collision will be a weighted average of their initial velocities based on their masses. The velocity of ball a after collision can be calculated using the formula: (m1 * v1 + m2 * v2) / (m1 + m2), where v1 and v2 are the initial velocities of balls a and b, and m1 and m2 are the masses of balls a and b respectively.


Two gliders with the initial velocities and masses shown below hit each other in a perfectly elastic collision (elasticity 1.0). What will be the velocity of glider 1 after the collision?

To determine the velocity of glider 1 after the collision, you would need to use the conservation of momentum principle. This involves setting up equations to account for the initial momentum and final momentum of the system. Given the initial velocities and masses of both gliders, you can calculate the velocity of glider 1 after the collision using the conservation of momentum equation: m1v1_initial + m2v2_initial = m1v1_final + m2v2_final.


How can one determine the final velocity in an inelastic collision?

To determine the final velocity in an inelastic collision, you can use the conservation of momentum principle. This means that the total momentum before the collision is equal to the total momentum after the collision. By setting up and solving equations based on the masses and initial velocities of the objects involved, you can calculate the final velocity.


If the mass at the top of the plane is initially at a height of above the horizontal plane what is the velocity of m after the collision?

The velocity of mass m after the collision will depend on the conservation of momentum. If the system is isolated and no external forces act on it, the momentum before the collision will equal the momentum after the collision. So, you will need to calculate the initial momentum of the system and then use it to find the final velocity of m.


What type of collision occurs when objects stick together?

A perfectly inelastic collision occurs when objects stick together after colliding, resulting in their combined mass moving together at the same velocity. This type of collision involves the maximum loss of kinetic energy.


After the collision, what is the direction of the cube's velocity?

After the collision, the direction of the cube's velocity depends on the forces acting on it and the laws of physics governing the collision.


Two gliders with the initial velocities and masses shown below hit each other in a perfectly elastic collision (elasticity 1.0). What will be the velocity of glider 2 after the collision 0.0 ms 2.0 ms?

After the collision, the velocities of the two gliders will swap, so glider 2 will have a velocity of 0.0 m/s. This is because the two gliders have the same mass, so they will exchange velocities in the collision.


What happens to the kinetic energy in a perfectly elastic collision between two perfectly rigid objects?

In a perfectly elastic collision between two perfectly rigid objects, the kinetic energy is conserved. This means that the total kinetic energy before the collision is equal to the total kinetic energy after the collision.


How to solve perfectly elastic collision problems effectively?

To solve perfectly elastic collision problems effectively, you can use the conservation of momentum and kinetic energy principles. First, calculate the total momentum before the collision and set it equal to the total momentum after the collision. Then, use the equation for kinetic energy to find the velocities of the objects after the collision. Remember to consider the direction of the velocities and use algebra to solve for any unknown variables.