You can use Plank's relation to calculate the energy of the absorbed photon.
E = h.f = h.c/L
given
E = Energy of a photon in Joules
f = frequency of the photon in s-1
c = speed of light in m/s
L = wavelength of the photon in metre
h = Planck constant = 6.62606957×10−34 J.s
The energy of this photon is 3,7351.10e-19 joules.
The energy is 18,263.10e4 joules.
You can calculate the wavelength of light emitted from a hydrogen atom using the Rydberg formula: 1/λ = R(1/n₁² - 1/n₂²), where λ is the wavelength, R is the Rydberg constant, and n₁ and n₂ are the initial and final energy levels of the electron.
Wave number=1/Wavelength=> Wavelength= 1/wave number
Gamma rays have the most energy per photon.
It tells you that the longer the wavelength the lower the energy. From the wavelength, one can also calculate the actual energy by using E = cxh/lambda where c is speed of light, h is Plank's constant and lambda is the wavelength.
Photon Energy E=hf = hc/w thus wavelength w= hc/E or the wavelength is hc divided by the energy of the photon or w= .2 e-24 Joule meter/Photon Energy.
To find the wavelength using binding energy, you can use the equation E=hc/λ, where E is the binding energy, h is the Planck constant, c is the speed of light, and λ is the wavelength. Rearrange the equation to solve for the wavelength: λ=hc/E. Plug in the values for h, c, and the binding energy to calculate the wavelength.
The energy of red light with a wavelength of 700 nm can be calculated using the formula E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength. Plugging in the values, you can calculate the energy in joules.
A wavelength doesn't have energy. The wave does. The details depend on the type of wave. Assuming an electromagnetic wave, you have to multiply the frequency by Plank's constant. To find the frequency, divide the speed of the wave by the wavelength.
The energy of this photon is 3,7351.10e-19 joules.
The energy is 18,263.10e4 joules.
To find the wavelength of the light, you can use the energy-wavelength relationship given by E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength. Rearrange the formula to solve for λ: λ = hc/E. Substitute the values for h, c, and the energy of 1.00 mole of photons to calculate the wavelength.
The energy of a photon is given by E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength. Plugging in the values for h and c and the wavelength of 700 nm, you can calculate the energy of a single photon.
To calculate the energy of an X-ray with an 8 nm wavelength, you can use the formula E=hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength. Plugging in the values should give you the energy in electron volts (eV).
It tells you that the longer the wavelength the lower the energy. From the wavelength, one can also calculate the actual energy by using E = cxh/lambda where c is speed of light, h is Plank's constant and lambda is the wavelength.
The energy of an electromagnetic wave is proportional to its frequency. You can calculate the frequency using the formula: frequency = speed of light / wavelength. Once you have the frequency, you can determine the energy using the formula: energy = Planck's constant * frequency.