ask Liviu Chibutaru
In the context of a Hamiltonian, Hc typically refers to the complex conjugate of the Hamiltonian operator. Taking the complex conjugate of the Hamiltonian operator is often done when dealing with quantum mechanical systems to ensure that physical observables are real-valued.
The Hamiltonian system refers to a dynamical system in classical mechanics that is described using Hamilton's equations of motion. It is a formalism that combines the equations of motion of a system with a specific function called the Hamiltonian, which represents the total energy of the system. It is widely used in physics and engineering to analyze and model the behavior of complex physical systems.
All animals derive energy from food.
Yes, fertilizer is a plant mineral.Specifically, fertilizer contains minerals. The minerals derive from plants when the fertilizers are considered organic. They derive from artificial, chemical or synthetic ingredients when the fertilizers are considered inorganic.
People who derive pleasure from causing others to suffer physical or mental pain are called sadists.
In classical physics, Lagrange and Hamiltonian mechanics are two equivalent formulations used to describe the motion of particles or systems. Both approaches are based on the principle of least action, but they use different mathematical formalisms. Lagrange mechanics uses generalized coordinates and velocities to derive equations of motion, while Hamiltonian mechanics uses generalized coordinates and momenta. Despite their differences, Lagrange and Hamiltonian mechanics are related through a mathematical transformation called the Legendre transformation, which allows one to derive the equations of motion in either formalism from the other.
Hamiltonian equations are a representation of Hamiltonian mechanics. Please see the link.
In classical mechanics, the Lagrangian and Hamiltonian formulations are two different mathematical approaches used to describe the motion of a system. Both formulations are equivalent and can be used interchangeably to solve problems in mechanics. The Lagrangian formulation uses generalized coordinates and velocities to derive the equations of motion, while the Hamiltonian formulation uses generalized coordinates and momenta. The relationship between the two formulations is that they both provide a systematic way to describe the dynamics of a system and can be used to derive the same equations of motion.
Hamiltonian is the proper adjective for Hamilton. For instance: The Hamiltonian view on the structure of government was much different from that of Jefferson.
To reduce a Hamiltonian path to a Hamiltonian cycle, you need to connect the endpoints of the path to create a closed loop. This ensures that every vertex is visited exactly once, forming a cycle.
To reduce a Hamiltonian cycle to a Hamiltonian path, you can remove one edge from the cycle. This creates a path that visits every vertex exactly once, but does not form a closed loop like a cycle.
The Hamiltonian is conserved in a dynamical system when the system is time-invariant, meaning the Hamiltonian function remains constant over time.
The key difference between the Lagrangian and Hamiltonian formulations of classical mechanics lies in the mathematical approach used to describe the motion of a system. In the Lagrangian formulation, the system's motion is described using generalized coordinates and velocities, while in the Hamiltonian formulation, the system's motion is described using generalized coordinates and momenta. Both formulations are equivalent and can be used to derive the equations of motion for a system, but they offer different perspectives on the system's dynamics.
The total energy of the system simply described in classical mechanics called as Hamiltonian.
The Lagrangian and Hamiltonian formulations of classical mechanics are two different mathematical approaches used to describe the motion of particles or systems. Both formulations are equivalent and can be used to derive the equations of motion for a system. The Lagrangian formulation uses generalized coordinates and velocities to describe the system's dynamics, while the Hamiltonian formulation uses generalized coordinates and momenta. The relationship between the two formulations is that they are related through a mathematical transformation called the Legendre transformation. This transformation allows one to switch between the Lagrangian and Hamiltonian formulations while preserving the underlying physics of the system.
In classical mechanics, the Hamiltonian can be derived from the Lagrangian using a mathematical process called the Legendre transformation. This transformation involves taking the partial derivatives of the Lagrangian with respect to the generalized velocities to obtain the conjugate momenta, which are then used to construct the Hamiltonian function. The Hamiltonian represents the total energy of a system and is a key concept in Hamiltonian mechanics.
A Hamiltonian path in a graph is a path that visits every vertex exactly once. It does not need to visit every edge, only every vertex. If a Hamiltonian path exists in a graph, the graph is called a Hamiltonian graph.