a) it generally increases
b) it does not change
c) it varies unpredictably
d) it generally decreases
The element in the fifth period with the highest ionization energy is xenon. Ionization energy generally increases across a period from left to right, so xenon, being on the far right of the period, has the highest ionization energy.
Ionization energy generally increases across a period as a result of a higher nuclear charge, however there are some exceptions such as Boron which has a lower ionization energy than Beryllium (because it is in a P orbital), and Oxygen which has a lower ionization energy than nitrogen (Because ionization decreases the electron electron repulsion in its orbitals).
As you move down a group on the periodic table, the first ionization energy generally decreases due to the increasing atomic size and shielding effect of inner electrons. Across a period, the first ionization energy generally increases because the effective nuclear charge increases, making it harder to remove an electron.
The ionisation energy increases across a period. Across a period, nuclear charge increases. The tendency to loose electron decreases.
Moving from left to right across a period, the first ionization energy increases because it becomes increasingly difficult to remove an electron.
Ionization energy increases as you go across a period, but as you go down a group it decreases.
The trend in period 2 ionization energy across the elements increases from left to right.
The element in the fifth period with the highest ionization energy is xenon. Ionization energy generally increases across a period from left to right, so xenon, being on the far right of the period, has the highest ionization energy.
Across a period, first ionization energy increases. However, when going down a group, first ionization energy generally decreases. As you go down a group, atoms hove more total electrons so they don't really care that much about their outermost ones.
Ionization energy generally increases across a period as a result of a higher nuclear charge, however there are some exceptions such as Boron which has a lower ionization energy than Beryllium (because it is in a P orbital), and Oxygen which has a lower ionization energy than nitrogen (Because ionization decreases the electron electron repulsion in its orbitals).
The ionization energy increases across a period because as you move from left to right, the number of protons in the nucleus increases, leading to a stronger attraction between the nucleus and the electrons. This makes it harder to remove an electron, resulting in higher ionization energy.
increases from left to right across a period.
As you move down a group on the periodic table, the first ionization energy generally decreases due to the increasing atomic size and shielding effect of inner electrons. Across a period, the first ionization energy generally increases because the effective nuclear charge increases, making it harder to remove an electron.
The ionisation energy increases across a period. Across a period, nuclear charge increases. The tendency to loose electron decreases.
Moving from left to right across a period, the first ionization energy increases because it becomes increasingly difficult to remove an electron.
No, arsenic does not have the highest ionization energy. Ionization energy generally increases as you move across a period in the periodic table from left to right. In the case of arsenic, it is found in the 3rd period, so elements to the right of it, such as bromine, have higher ionization energies.
Ionization energy generally increases across a period from left to right on the periodic table. This trend occurs because as you move across a period, the number of protons in the nucleus increases, resulting in a greater nuclear charge. This stronger attraction between the nucleus and the outer electrons requires more energy to remove an electron, thus increasing the ionization energy.